CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles investigation of electronic structure, effective carrier masses, and optical properties of ferromagnetic semiconductor CdCr2S4 |
Xu-Hui Zhu(朱旭辉)1,2, Xiang-Rong Chen(陈向荣)1,3, Bang-Gui Liu(刘邦贵)2 |
1. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract The electronic structures, the effective masses, and optical properties of spinel CdCr2S4 are studied by using the full-potential linearized augmented planewave method and a modified Becke-Johnson exchange functional within the density-functional theory. Most importantly, the effects of the spin-orbit coupling (SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center. SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr2S4. These should be useful to deeply understand spinel CdCr2S4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.
|
Received: 04 December 2015
Revised: 22 February 2016
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. U1430117 and U1230201). |
Corresponding Authors:
Xiang-Rong Chen, Bang-Gui Liu
E-mail: xrchen@scu.edu.cn;bgliu@iphy.ac.cn
|
Cite this article:
Xu-Hui Zhu(朱旭辉), Xiang-Rong Chen(陈向荣), Bang-Gui Liu(刘邦贵) First-principles investigation of electronic structure, effective carrier masses, and optical properties of ferromagnetic semiconductor CdCr2S4 2016 Chin. Phys. B 25 057501
|
[1] |
Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, Tsurkan V and Loidl A 2005 Nature 434 364
|
[2] |
Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103
|
[3] |
Sun C P, Huang C L, Lin C C, Her J L, Ho C J, Lin J Y, Berger H and Yang H D 2010 Appl. Phys. Lett. 96 122109
|
[4] |
Xie Y M, Yang Z R, Li L, Yin L H, Hu X B, Huang Y L, Jian H B, Song W H, Sun Y P, Zhou S Q and Zhang Y H 2012 J. Appl. Phys. 112 123912
|
[5] |
Xie Y M, Yang Z R, Zhang Z T, Yin L H, Chen X L, Song W H, Sun Y P, Zhou S Q, Tong W and Zhang Y H 2013 Europhys. Lett. 104 17005
|
[6] |
Sun C P, Lin C C, Her J L, Ho C J, Taran S, Berger H, Chaudhuri B K and Yang H D 2009 Phys. Rev. B 79 214116
|
[7] |
Gnezdilov V, Lemmens P, Pashkevich Yu G, Payen Ch, Choi K Y, Hemberger J, Loidl A and Tsurkan V 2011 Phys. Rev. B 84 045106
|
[8] |
Oliveira G N P, Pereira A M, Lopes A M L, Amaral J S, dos Santos M A, Ren Y, Mendonc T M, Sousa C T, Amaral V S, Correia J G and Araujó J P 2012 Phys. Rev. B 86 224418
|
[9] |
Hartmann O, Kalvius G M, Wappling R, Gunther A, Tsurkan V, Krimmel A and Loidl A 2013 Eur. Phys. J. B 86 148
|
[10] |
Shanthi N, Mahadevan P and Sarma1 D D 2000 J. Solid State Chem. 155 198
|
[11] |
Fennie C J and Rabe K M 2005 Phys. Rev. B 72 214123
|
[12] |
Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103
|
[13] |
Yaresko A N 2008 Phys. Rev. B 77 115106
|
[14] |
Guo S D and Liu B G 2012 J. Magn. Magn. Mater. 324 2410
|
[15] |
Hohenberg and Kohn W 1964 Phys. Rev. B 136 864
|
[16] |
Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
|
[17] |
Blaha P, Schwarz K and Luitz J 1990 Comput. Phys. Commun. 59 399
|
[18] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ISBN: 3-9501031-1-2 (Austria: Universitat Wien)
|
[19] |
Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
|
[20] |
Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
|
[21] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[22] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[23] |
Singh D J 2010 Phys. Rev. B 82 205102
|
[24] |
Singh D J 2010 Phys. Rev. B 82 155145
|
[25] |
Singh D J, Seo S S A and Lee H N 2010 Phys. Rev. B 82 180103
|
[26] |
Kim Y S, Marsman M, Kresse G, Tran F and Blaha P 2010 Phys. Rev. B 82 205212
|
[27] |
MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
|
[28] |
Singh D J 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic Publishers)
|
[29] |
Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
|
[30] |
Bruesch P and Dambrogi P 1972 Phys. Stat. Sol. (b) 50 513
|
[31] |
Slebarski A, Konopka D and Konopka D 1974 Phys. Lett. A 50 333
|
[32] |
Sato K 2001 Crystal Growth and Characterization of Magnetic Semiconductors, in: Advances in Crystal Growth Research, Sato K, Furukawa Y and Nakajima K Eds. (Amsterdam: Elsevier) pp. 303-309
|
[33] |
Ehlers D, Tsurkan V, Krug von Nidda H A and Loidl A 2012 Phys. Rev. B 86 174423
|
[34] |
Reshak A H, Alahmed Z A and Azam S 2014 Int. J. Electrochem. Sci. 9 975
|
[35] |
Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1
|
[36] |
Werner W S M, Glantschnig K and Ambrosch-Draxl C 2009 J. Phys. Chem. Ref. Data 38 1013
|
[37] |
Gaponenko S V 1998 Optical Properties of Semiconductor Nanocrystals (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|