Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057501    DOI: 10.1088/1674-1056/25/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of electronic structure, effective carrier masses, and optical properties of ferromagnetic semiconductor CdCr2S4

Xu-Hui Zhu(朱旭辉)1,2, Xiang-Rong Chen(陈向荣)1,3, Bang-Gui Liu(刘邦贵)2
1. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
Abstract  

The electronic structures, the effective masses, and optical properties of spinel CdCr2S4 are studied by using the full-potential linearized augmented planewave method and a modified Becke-Johnson exchange functional within the density-functional theory. Most importantly, the effects of the spin-orbit coupling (SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center. SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr2S4. These should be useful to deeply understand spinel CdCr2S4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.

Keywords:  CdCr2S4 semiconductor      effective mass      optical properties      density functional theory  
Received:  04 December 2015      Revised:  22 February 2016      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. U1430117 and U1230201).

Corresponding Authors:  Xiang-Rong Chen, Bang-Gui Liu     E-mail:  xrchen@scu.edu.cn;bgliu@iphy.ac.cn

Cite this article: 

Xu-Hui Zhu(朱旭辉), Xiang-Rong Chen(陈向荣), Bang-Gui Liu(刘邦贵) First-principles investigation of electronic structure, effective carrier masses, and optical properties of ferromagnetic semiconductor CdCr2S4 2016 Chin. Phys. B 25 057501

[1] Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, Tsurkan V and Loidl A 2005 Nature 434 364
[2] Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103
[3] Sun C P, Huang C L, Lin C C, Her J L, Ho C J, Lin J Y, Berger H and Yang H D 2010 Appl. Phys. Lett. 96 122109
[4] Xie Y M, Yang Z R, Li L, Yin L H, Hu X B, Huang Y L, Jian H B, Song W H, Sun Y P, Zhou S Q and Zhang Y H 2012 J. Appl. Phys. 112 123912
[5] Xie Y M, Yang Z R, Zhang Z T, Yin L H, Chen X L, Song W H, Sun Y P, Zhou S Q, Tong W and Zhang Y H 2013 Europhys. Lett. 104 17005
[6] Sun C P, Lin C C, Her J L, Ho C J, Taran S, Berger H, Chaudhuri B K and Yang H D 2009 Phys. Rev. B 79 214116
[7] Gnezdilov V, Lemmens P, Pashkevich Yu G, Payen Ch, Choi K Y, Hemberger J, Loidl A and Tsurkan V 2011 Phys. Rev. B 84 045106
[8] Oliveira G N P, Pereira A M, Lopes A M L, Amaral J S, dos Santos M A, Ren Y, Mendonc T M, Sousa C T, Amaral V S, Correia J G and Araujó J P 2012 Phys. Rev. B 86 224418
[9] Hartmann O, Kalvius G M, Wappling R, Gunther A, Tsurkan V, Krimmel A and Loidl A 2013 Eur. Phys. J. B 86 148
[10] Shanthi N, Mahadevan P and Sarma1 D D 2000 J. Solid State Chem. 155 198
[11] Fennie C J and Rabe K M 2005 Phys. Rev. B 72 214123
[12] Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103
[13] Yaresko A N 2008 Phys. Rev. B 77 115106
[14] Guo S D and Liu B G 2012 J. Magn. Magn. Mater. 324 2410
[15] Hohenberg and Kohn W 1964 Phys. Rev. B 136 864
[16] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[17] Blaha P, Schwarz K and Luitz J 1990 Comput. Phys. Commun. 59 399
[18] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ISBN: 3-9501031-1-2 (Austria: Universitat Wien)
[19] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[20] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Singh D J 2010 Phys. Rev. B 82 205102
[24] Singh D J 2010 Phys. Rev. B 82 155145
[25] Singh D J, Seo S S A and Lee H N 2010 Phys. Rev. B 82 180103
[26] Kim Y S, Marsman M, Kresse G, Tran F and Blaha P 2010 Phys. Rev. B 82 205212
[27] MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
[28] Singh D J 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic Publishers)
[29] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
[30] Bruesch P and Dambrogi P 1972 Phys. Stat. Sol. (b) 50 513
[31] Slebarski A, Konopka D and Konopka D 1974 Phys. Lett. A 50 333
[32] Sato K 2001 Crystal Growth and Characterization of Magnetic Semiconductors, in: Advances in Crystal Growth Research, Sato K, Furukawa Y and Nakajima K Eds. (Amsterdam: Elsevier) pp. 303-309
[33] Ehlers D, Tsurkan V, Krug von Nidda H A and Loidl A 2012 Phys. Rev. B 86 174423
[34] Reshak A H, Alahmed Z A and Azam S 2014 Int. J. Electrochem. Sci. 9 975
[35] Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[36] Werner W S M, Glantschnig K and Ambrosch-Draxl C 2009 J. Phys. Chem. Ref. Data 38 1013
[37] Gaponenko S V 1998 Optical Properties of Semiconductor Nanocrystals (Cambridge: Cambridge University Press)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!