Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline
Ru Xing(邢茹)1,2, Su-Lei Wan(万素磊)1, Wen-Qing Wang(王文清)1, Lin Zheng(郑琳)1, Xiang Jin(金香)1, Min Zhou(周敏)2, Yi Lu(鲁毅)1,2, Jian-Jun Zhao(赵建军)1,2
1 Department of Physics, Baotou Normal University, Baotou 014030, China; 2 Inner Mongolia Key Laboratory of Magnetism and Magnetic Materials, Baotou 014030, China
Abstract A polycrystalline sample Nd0.5Sr0.3Ca0.2MnO3 is prepared by the conventional solid state reaction method. The structure and magnetic properties are investigated with x-ray diffraction (XRD) patterns, a superconducting quantum interference device (SQUID), and electron spin resonance (ESR). The sample is in single phase with the space group Pbnm symmetry. With the decrease of temperature, Nd0.5Sr0.3Ca0.2MnO3 undergoes three magnetic transitions: ferromagnetic transition at TC ≈ 210 K, charge-ordering at TCO ≈ 175 K, and antiferromagnetic transition at TN=155 K. In addition, the activation energy Ea ≈ 52.78 meV can be extracted by curve fitting.
(Magnetization curves, hysteresis, Barkhausen and related effects)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032,and 61565013), the Inner Mongolia Natural Science Foundation, China (Grant Nos. 2015MS0109, NJZZ11166, and NJZY12202), and the Science and Technology in Baotou Production-Study-Research Cooperation Projects, China (Grant No. 2014X1014-01).
Ru Xing(邢茹), Su-Lei Wan(万素磊), Wen-Qing Wang(王文清), Lin Zheng(郑琳), Xiang Jin(金香), Min Zhou(周敏), Yi Lu(鲁毅), Jian-Jun Zhao(赵建军) Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline 2016 Chin. Phys. B 25 047601
[1]
Jiang W J, Xue Z Z, Privezentsev R, Mukovskii Y and Williams G 2010 J. Phys.: Conf. Ser. 200 012072
[2]
Zhou S M, Li Y, Guo Y Q, Zhao J Y, Cai X and Shi L 2013 Appl. Phys. 114 163903
[3]
Lu H X, Wang J, Shen B G and Sun J R 2015 Chin. Phys. B 24 027504
[4]
Asma K, Saadat A S and Affia A 2013 Chin. Phys. Lett. 30 077501
[5]
Rößler S, Harikrishnan S, Naveen Kumar C M, Bhat H L, Suja Elizabeth, Rößler U K, Steglich F and Wirth S 2009 Journal of Supercon-ductivity and Novel Magnetism 22 205
[6]
Coey J M D, Viret M and von Molnar S 1999 Adv. Phys. 48 167
[7]
Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
[8]
Szewczyk A, Gutowska M, Piotrowski K and Dabrowski B 2003 Appl. Phys. 94 1873
[9]
Zhu H, Song H and Zhang Y H 2002 Appl. Phys. Lett. 81 3416
[10]
Zhao G M, Ghosh K and Greene R L 1998 J. Phys: Condens. Matter 10 L737
[11]
Shen C H, Liu R S, Hu S F, Lin J G, Huang C Y and She H S 1999 Appl. Phys. 86 2178
[12]
Ning W, Wang F, Zhang X Q, Chen Z H and Sun Y 2009 J. Magn. Magn. Mater. 321 88
[13]
Zhao J J, Xing R, Lu Y, Hao S B, Zhao M Y, Jin X, Zheng L, Ning W, Sun Y and Chen Z H 2008 Chin. Phys. B 17 2721
[14]
Li J Q and Yuan S L 2005 Solid State Commun. 134 295
[15]
Tokura Y and Tomioka Y 1999 J. Magn. Magn. Mater. 200 1
[16]
Terai T, Sasaki T, Kakeshita T, Fukuda T, Saburi T, Kitagawa H, Kindo K and Honda M 2001 Phys. Rev. B 61 3488
[17]
Fang Y, Yan S M, Qiao W, Wang W, Wang D H and Du Y W 2014 Chin. Phys. B 23 117501
[18]
Chattopadhyay S, Giri S and Majumdar S 2012 Appl. Phys. 112 083915
[19]
Janhavi P J, Rajeev G, Sood A K, Sood A K and Bhat S V 2002 Phys. Rev. B 65 024410
[20]
Ma X, Lu Y, Kou Z Q, Di N L, Cheng Z H and Li Q A 2005 Chin. Phys. 14 192
[21]
Yuan S L, Li J Q, Jiang Y, Yang Y P, Zeng X Y, Li G, Tu F, Zhang G Q, Tang C Q and Jin S Z 2000 Phys. Rev. B 62 5313
[22]
Ramesh Babu M, Han X F, Ning W, Cheng Z H, Sun Y and Jayavel R 2009 Mater. Lett. 63 1528
[23]
Moreno N O, Pagliuso P G, Rettori C, Gardner J S, Sarrao J L, Thompson J D, Huber D L, Mitchell J F, Martinez J J and Oseroff S B 2001 Phys. Rev. B 63 174413
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon Du Qian-Heng (杜乾衡), Chen Guo-Fu (陈国富), Yang Wen-Yun (杨文云), Hua Mu-Xin (华慕欣), Du Hong-Lin (杜红林), Wang Chang-Sheng (王常生), Liu Shun-Quan (刘顺荃), Han Jing-Zhi (韩景智), Zhou Dong (周栋), Zhang Yan (张焱), Yang Jin-Bo (杨金波). Chin. Phys. B, 2015, 24(6): 067502.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.