Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077101    DOI: 10.1088/1674-1056/26/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials

Jing Yang(杨静)1, De-Gang Zhao(赵德刚)1,2, De-Sheng Jiang(江德生)1, Ping Chen(陈平)1, Zong-Shun Liu(刘宗顺)1, Jian-Jun Zhu(朱建军)1, Xiang Li(李翔)1, Wei Liu(刘炜)1, Feng Liang(梁锋)1, Li-Qun Zhang(张立群)3, Hui Yang(杨 辉)1,3, Wen-Jie Wang(王文杰)4, Mo Li(李沫)4
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
4 Microsystem & Terahertz Research Center, Chinese Academy of Engineering Physics, Chengdu 610200, China
Abstract  

Physical implications of the activation energy derived from temperature dependent photoluminescence (PL) of InGaN-based materials are investigated, finding that the activation energy is determined by the thermal decay processes involved. If the carrier escaping from localization states is responsible for the thermal quenching of PL intensity, as often occurs in InGaN materials, the activation energy is related to the energy barrier height of localization states. An alternative possibility for the thermal decay of the PL intensity is the activation of nonradiative recombination processes, in which case thermal activation energy would be determined by the carrier capture process of the nonradiative recombination centers rather than by the ionization energy of the defects themselves.

Keywords:  nitride materials      temperature dependent photoluminescence      activation energy  
Received:  05 March 2017      Revised:  07 April 2017      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.55.Eq (III-V semiconductors)  
  73.21.Fg (Quantum wells)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos.2016YFB0401801 and 2016YFB0400803),the National Natural Science Foundation of China (Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089),Science Challenge Project,China (Grant No.JCKY2016212A503),and Beijing Municipal Science and Technology Project,China (Grant No.Z161100002116037).

Corresponding Authors:  De-Gang Zhao     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Xiang Li(李翔), Wei Liu(刘炜), Feng Liang(梁锋), Li-Qun Zhang(张立群), Hui Yang(杨 辉), Wen-Jie Wang(王文杰), Mo Li(李沫) Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials 2017 Chin. Phys. B 26 077101

[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (New York:Springer)
[2] Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2014 Chin. Phys. B 23 068801
[3] Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M and Yang H 2016 J. Semicond. 37 044006
[4] Jiang L R, Liu J P, Tian A Q, Cheng Y, Li Z C, Zhang L Q, Zhang S M, Li D Y, Ikeda M and Yang H 2016 J. Semicond. 37 111001
[5] Gong X Q, Feng S W, Yue Y, Yang J W and Li J W 2016 J. Semicond. 37 044011
[6] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
[7] Moon Y T, Kim D J, Song K M, Choi C J, Han S H, Seong T Y and Park S J 2001 J. Appl. Phys. 89 6514
[8] Li J M, Liu Z, Liu Z Q, Yan J C, Wei T B, Yi X Y and Wang J X 2016 J. Semicond. 37 061001
[9] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129
[10] Demechenko D O, Diallo I C and Reshchikov M A 2013 Phys. Rev. Lett. 110 087404
[11] Reshchikov M A and Korotkov R Y 2001 Phys. Rev. B 64 115205
[12] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[13] Wang Y, Pei X J, Xing Z G, Guo L W, Jia H Q, Chen H and Zhou J M 2007 J. Appl. Phys. 101 033509
[14] Zheng X H, Chen H, Yan Z B, Li D S, Yu H B, Huang Q and Zhou J M 2004 J. Appl. Phys. 96 1899
[15] Sasaki A, Shibakawa S I, Kawakami Y, Nishizuka K, Narukawa Y and Mukai T 2006 J. Appl. Phys. 45 8719
[16] Eliseev P G, Perlin P, Lee J and Osiski M 1997 Appl. Phys. Lett. 71 569
[17] Li X, Zhao D G, Jiang D S, Yang J, Chen P, Liu Z S, Zhu J J, Liu W, He X G, Li X J, Liang F, Liu J P, Zhang L Q, Yang H, Zhang Y T, Du G T, Long H and Li M 2017 Chin. Phys. B 26 017805
[18] Williams F E and Eyring H 1947 J. Chem. Phys. 15 289
[19] Narukawa Y, Kawakami Y, Funato M, Fujita S and Nakamura S 1997 Appl. Phys. Lett. 70 981
[20] Nagahama S, Yanamoto T, Sano M and Mukai T 2001 Jpn. J. Appl. Phys. 40 3075
[1] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[2] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[3] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[4] The residual C concentration control for low temperature growth p-type GaN
Shuang-Tao Liu(刘双韬), De-Gang Zhao(赵德刚), Jing Yang(杨静), De-Sheng Jiang(江德生), Feng Liang(梁锋), Ping Chen(陈平), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Xiang Li(李翔), Wei Liu(刘炜), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2017, 26(10): 107102.
[5] Electron trapping properties at HfO2/SiO2 interface, studied by Kelvin probe force microscopy and theoretical analysis
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(8): 087701.
[6] Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline
Ru Xing(邢茹), Su-Lei Wan(万素磊), Wen-Qing Wang(王文清), Lin Zheng(郑琳), Xiang Jin(金香), Min Zhou(周敏), Yi Lu(鲁毅), Jian-Jun Zhao(赵建军). Chin. Phys. B, 2016, 25(4): 047601.
[7] Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films
Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ling-Cong Le(乐伶聪), Xiao-Jing Li(李晓静), Xiao-Guang He(何晓光), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2016, 25(2): 027102.
[8] Field-dependent resistive transitions in Yba2Cu3O7-δ thin films: Influence of the pseudogap on vortex dynamics
S H Naqib, R S Islam. Chin. Phys. B, 2015, 24(1): 017402.
[9] Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well solar cells
Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2014, 23(6): 068801.
[10] Influences of polarization effect and p-region doping concentration on the photocurrent response of solar-blind p–i–n avalanche photodiodes
Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Wu Liang-Liang (吴亮亮), Li Liang (李亮), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2014, 23(2): 028503.
[11] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(11): 110208.
[12] Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime
Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2013, 22(9): 098801.
[13] In situ electrical resistance and activation energy of solid C60 under high pressure
Yang Jie (杨洁), Liu Cai-Long (刘才龙), Gao Chun-Xiao (高春晓). Chin. Phys. B, 2013, 22(9): 096202.
[14] Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
Zhang Jie (张洁), Yuan Chao (袁超), Wang Jun-Qiao (王俊俏), Liang Er-Jun (梁二军), Chao Ming-Ju (晁明举). Chin. Phys. B, 2013, 22(8): 087201.
[15] The effects of InGaN layer thickness on the performance of InGaN/GaN p-i-n solar cells
Li Liang (李亮), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Wang Hui (王辉), Yang Hui (杨辉). Chin. Phys. B, 2013, 22(6): 068802.
No Suggested Reading articles found!