Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030203    DOI: 10.1088/1674-1056/25/3/030203
GENERAL Prev   Next  

Bright and dark soliton solutions for some nonlinear fractional differential equations

Ozkan Guner1, Ahmet Bekir2
1. Cankiri Karatekin University, Faculty of Economics and Administrative Sciences, Department of International Trade, Cankiri, Turkey;
2. Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics-Computer, Eskisehir, Turkey
Abstract  In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona-Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann-Liouville sense.
Keywords:  exact solutions      ansatz method      space-time fractional modified Benjamin-Bona-Mahoney equation      time fractional mKdV equation  
Received:  19 September 2015      Revised:  25 October 2015      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Corresponding Authors:  Ozkan Guner, Ahmet Bekir     E-mail:  ozkanguner@karatekin.edu.tr;abekir@ogu.edu.tr

Cite this article: 

Ozkan Guner, Ahmet Bekir Bright and dark soliton solutions for some nonlinear fractional differential equations 2016 Chin. Phys. B 25 030203

[1] Podlubny I 1999 Fractional Differential Equations (California: Academic Press)
[2] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier)
[3] Zheng B 2012 Commun. Theor. Phys. 58 623
[4] Bekir A and Güner Ö 2013 Chin. Phys. B 22 110202
[5] Lu B 2012 J. Math. Anal. Appl. 395 684
[6] Zhang S and Zhang H Q 2011 Phys. Lett. A 375 1069
[7] Tong B, He Y, Wei L and Zhang X 2012 Phys. Lett. A 376 2588
[8] Bekir A, Güner Ö and Cevikel A C 2013 Abstr. Appl. Anal. 2013 426462
[9] Güner Ö and Cevikel A C 2014 The Scientific World Journal 2014 489495
[10] Liu W and Chen K 2013 Pramana-J. Phys. 81 3
[11] Güner Ö and Eser D 2014 Adv. Math. Phys. 2014 456804
[12] Bulut H, Baskonus H M and Pandir Y 2013 Abstr. Appl. Anal. 2013 636802
[13] Younis M, Rehman H and Iftikhar M 2014 Appl. Math. Comput. 249 81
[14] Güner Ö 2015 Chin. Phys. B 24 100201
[15] Mirzazadeh M 2015 Pramana-J. Phys. 85 17
[16] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Gordon and Breach Science Publishers)
[17] Caputo M 1967 Geophys. J. Royal Astronom. Soc. 13 529
[18] Jumarie G 2006 Comput. Math. Appl. 51 1367
[19] Jumarie G 2009 Appl. Maths. Lett. 22 378
[20] He J H, Elegan S K and Li Z B 2012 Phys. Lett. A 376 257
[21] Saad M, Elagan S K, Hamed Y S and Sayed M 2013 Int. J. Basic Appl. Sci. 13 23
[22] Elghareb T, Elagan S K, Hamed Y S and Sayed M 2013 Int. J. Basic Appl. Sci. 13 19
[23] Alzaidy J F 2013 British J. Math. Comput. Sci. 3 153
[24] Ege S M and Misorli E 2014 Adv. Diff. Equ. 2014 135
[25] Bekir A, Güner Ö and Unsal O 2015 J. Comput. Nonlinear Dyn. 10 021020
[26] Yusufoglu E and Bekir A 2008 Chaos Solitons Fractals 38 1126
[27] Wazwaz A M 2006 Phys. Lett. A 355 358
[28] Yusufoglu E 2008 Phys. Lett. A 372 442
[29] Abbasbandy S and Shirzadi A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1759
[30] Cevikel A C, Bekir A, Akar M and San S 2012 Pramana-J. Phys. 79 337
[31] Triki H and Wazwaz A M 2009 Phys. Lett. A 373 2162
[32] Inc M, Ulutas E and Biswas A 2013 Chin. Phys. B 22 060204
[33] Ebadi G and Biswas A 2011 Math. Comput. Model. 53 694
[34] Biswas A, Triki H and Labidi M 2011 Physics of Wave Phenomena 19 24
[35] Bekir A and Güner Ö 2013 Pramana-J. Phys. 81 203
[36] Younis M and Ali S 2014 Appl. Math. Comput. 246 460
[37] Bekir A, Aksoy E and Güner Ö 2012 Phys. Scr. 85 035009
[38] Triki H and Wazwaz A M 2011 Appl. Math. Comput. 217 8846
[39] Bekir A and Güner Ö 2013 Ocean Engineering 74 276
[40] Kurulay M and Bayram M 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1777
[41] Zayed E M E and Amer Y A 2014 Int. J. Phys. Sci. 9 174
[42] Zayed E M E and Arnous A H 2014 Eur. J. Acad. Essays 1 6
[43] Güner Ö, Bekir A and Bilgil H 2015 Adv. Nonlinear Anal. 4 201
[44] Abazari R 2011 Appl. Math. Sci. 5 2943
[45] Alquran M and Al-Khaled K 2012 Math. Sci. 6 1
[46] Qawasmeh A 2013 J. Math. Comput. Sci. 3 1475
[47] Khan K and Akbar M A 2014 Ain Shams Eng. J. 5 247
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] Singular and non-topological soliton solutions for nonlinear fractional differential equations
Ozkan Guner. Chin. Phys. B, 2015, 24(10): 100201.
[7] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[8] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[11] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[12] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[13] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[14] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[15] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
No Suggested Reading articles found!