|
|
Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field |
Yi Yang(杨毅)1, Shao-Hong Cai(蔡绍洪)2, Zheng-Wen Long(隆正文)1, Hao Chen(陈浩)1, Chao-Yun Long(龙超云)1 |
1 College of Physics, Guizhou University, Guiyang 550025, China; 2 School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China |
|
|
Abstract We study a two-dimensional generalized Kemmer oscillator in the cosmic string spacetime with the magnetic field to better understand the contribution from gravitational field caused by topology defects, and present the exact solutions to the generalized Kemmer equation in the cosmic string with the Morse potential and Coulomb-liked potential through using the Nikiforov-Uvarov (NU) method and biconfluent Heun equation method, respectively. Our results give the topological defect's correction for the wave function, energy spectrum and motion equation, and show that the energy levels of the generalized Kemmer oscillator rely on the angular deficit α connected with the linear mass density m of the cosmic string and characterized the metric's structure in the cosmic string spacetime.
|
Received: 21 January 2020
Revised: 03 April 2020
Accepted manuscript online:
|
PACS:
|
03.65.Pm
|
(Relativistic wave equations)
|
|
11.27.+d
|
(Extended classical solutions; cosmic strings, domain walls, texture)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11465006 and 11565009). |
Corresponding Authors:
Shao-Hong Cai, Zheng-Wen Long
E-mail: caish@mail.gufe.edu.cn;zwlong@gzu.edu.cn
|
Cite this article:
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云) Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field 2020 Chin. Phys. B 29 070302
|
[1] |
Moshinsky M and Szczepaniak A 1989 J. Phys. A: Math. Gen. 22 L817
|
[2] |
Ito D, Mori K and Carriere E 1967 Nuov. Cim. A 51 1119
|
[3] |
Moreno M and Zentella A 1989 J. Phys. A: Math. Gen. 22 L821
|
[4] |
Martinez-y-Moreno R P and Salas-Brito A L 1992 J. Math. Phys. 33 1831
|
[5] |
Boumali A and Hassanabadi H 2015 Z. Naturforsch. A 70 619
|
[6] |
Sari R A, Suparmi A and Cari C 2016 Chin. Phys. B 25 010301
|
[7] |
Kurniawan A, Suparmi A and Cari C 2015 Chin. Phys. B 24 030302
|
[8] |
Suparmi A, Cari C and Deta U A 2014 Chin. Phys. B 23 090304
|
[9] |
Maghsoodi E, Hassanabadi H and Zarrinkamar S 2013 Chin. Phys. B 22 030302
|
[10] |
Chargui Y, Trabelsi A and Chetouani L 2010 Phys. Lett. A 374 2907
|
[11] |
Franco-Villafane J A, Sadurni E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405
|
[12] |
Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617
|
[13] |
Munarriz J, Dominguez-Adamea F and Limab R P A 2012 Phys. Lett. A 376 3475
|
[14] |
Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. Lett. 99 123602
|
[15] |
Lamata L, Leon J, Schatz T and Solano E 2007 Phys. Rev. Lett. 98 253005
|
[16] |
Kemmer N 1939 Proc. R. Soc. Lond. A 173 91
|
[17] |
Bednar M, Ndimubandi J and Nikitin A G 1997 Can. J. Phys. 75 283
|
[18] |
Montigny M D, Khanna F C, Santana A E, Santos E S and Vianna J D M 2000 J. Phys. A: Math. Gen. 33 L273
|
[19] |
Gribov V 1999 Eur. Phys. J. C 10 71
|
[20] |
Boutabia-Cheraitia B and Boudjedaa T 2005 Phys. Lett. A 338 97
|
[21] |
Fernandes M C B, Santana A E and Vianna J D M 2003 J. Phys. A: Math. Gen. 36 3841
|
[22] |
Krase L D, Pao L and Good R H 1971 Phys. Rev. D 3 1275
|
[23] |
Goldman J T and Tsai W Y 1971 Phys. Rev. D 4 3648
|
[24] |
Tsai W Y 1971 Phys. Rev. D 4 3652
|
[25] |
Hamzavi M, Ikhdair S M and Thylwe K E 2012 Z. Naturforsch. A 67 567
|
[26] |
Hamzavi M, Rajabi A A 2011 Commun. Theor. Phys. 55 35
|
[27] |
Moghadam S A, Eshghi M and Mehraban H 2014 Phys. Scr. 89 095202
|
[28] |
Ikot A N, Maghsoodi E, Ibanga E J, Zarrinkamar S and Hassanabadi H 2013 Chin. Phys. B 22 120302
|
[29] |
Aydogdu O, Sever R 2009 Phys. Scr. 80 015001
|
[30] |
Hassanabadi H, Maghsoodi E and Zarrinkamar S 2012 J. Math. Phys. 53 022104
|
[31] |
Sedaghatnia P, Hassanabadi H and Ahmed F 2019 Eur. Phys. J. C 79 541
|
[32] |
Rahimov H, Nikoofard H, Zarrinkamar S and Hassanabadi H 2013 Appl. Math. Comput. 219 4710
|
[33] |
Hassanabadi H, Zarrinkamar S and Rajabi A A 2011 Commun. Theor. Phys. 55 541
|
[34] |
Bakke K 2013 Gen. Rel. Grav. 45 1847
|
[35] |
Oliveira R R S 2019 Gen. Rel. Grav. 51 120
|
[36] |
Da Silva W C F and Bakke K 2019 Class. Quantum Grav. 36 235002
|
[37] |
Cuzinatto R R, De Montigny M and Pompeia P J 2019 Gen. Rel. Grav. 51 107
|
[38] |
Ikot A N, Abbey T M, Chukwuocha E O and Onyeaju M C 2016 Can. J. Phys. 94 517
|
[39] |
Bakke K and Mota H 2018 Eur. Phys. J. Plus 133 409
|
[40] |
Oliveira R R S 2019 Eur. Phys. J. C 79 725
|
[41] |
Maia A V D M and Bakke K 2019 Eur. Phys. J. C 79 551
|
[42] |
Oliveira R R S 2019 Eur. Phys. J. C 79 725
|
[43] |
Zhao Z L, Long C Y, Long Z W and Xu T 2017 Chin. Phys. B 26 080301
|
[44] |
Messai N and Boumali A 2015 Eur. Phys. J. Plus 130 140
|
[45] |
Hosseinpour M, Hassanabadi H and Andrade F M 2018 Eur. Phys. J. C 78 93
|
[46] |
Linet B 1985 Gen. Rel. Grav. 17 1109
|
[47] |
Vilenkin A 1985 Phys. Rept. 121 263
|
[48] |
Sogut K and Havare A 2006 Class. Quantum Grav. 23 7129
|
[49] |
Carvalho J, Furtado C and Moraes F 2011 Phys. Rev. A 84 032109
|
[50] |
Unal N 2005 Concepts Phys. Ⅱ 273
|
[51] |
Deng L F, Long C Y, Long Z W and Xu T 2018 Adv. High Energy Phys. 2018 2741694
|
[52] |
Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
|
[53] |
Vitoria R L L, Belich H and Bakke K 2017 Eur. Phys. J. Plus 132 25
|
[54] |
Vitoria R L L and Bakke K 2018 Eur. Phys. J. Plus 133 490
|
[55] |
Bakke K and Furtado C 2015 Ann. Phys. 355 48
|
[56] |
Vitoria R L L and Bakke K 2016 Eur. Phys. J. Plus 131 36
|
[57] |
Figueiredo-Medeiros E R and De Mello E R B 2012 Eur. Phys. J. C 72 2051
|
[58] |
Sobhani H, Ikot A N and Hassanabadi H 2017 Eur. Phys. J. Plus 132 240
|
[59] |
Sobhani H, Hassanabadi H and Chung W S 2018 Nucl. Phys. A 973 33
|
[60] |
Hosseini M, Hassanabadi H, Hassanabadi S and Sedaghatnia P 2019 Int. J. Geom. Methods Mod. Phys. 16 1950054
|
[61] |
Sargolzaeipor S, Hassanabadi H and Chung W S 2019 Mod. Phys. Lett. A 34 1950183
|
[62] |
Vieira H S and Bezerra V B 2015 J. Math. Phys. 56 092501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|