Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060505    DOI: 10.1088/1674-1056/23/6/060505
GENERAL Prev   Next  

Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system

Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平)
College of Science, Lishui University, Lishui 323000, China
Abstract  With the help of the symbolic computation system, Maple and Riccati equation (ξ'=a0+a1 ξ+a2 ξ2), expansion method, and a linear variable separation approach, a new family of exact solutions with q=lx+my+nt+Γ(x,y,t) for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system (GCBS) are derived. Based on the derived solitary wave solution, some novel localized excitations such as fusion, fission, and annihilation of complex waves are investigated.
Keywords:  Riccati equation expansion method      GCBS system      exact solutions      fusion      fission and annihilation of complex waves  
Received:  12 November 2013      Revised:  12 December 2013      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375079), the Scientific Research Fund of Zhejiang Provincial Education Department of China (Grant No. Y 201120994), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257, LY14A010005, and Y6110140).
Corresponding Authors:  Ma Song-Hua     E-mail:  msh6209@aliyun.com

Cite this article: 

Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平) Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system 2014 Chin. Phys. B 23 060505

[1] Ma S H, Fang J P and Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)
[2] Ma S H, Ren Q B, Fang J P and Zheng C L 2007 Acta Phys. Sin. 56 6777 (in Chinese)
[3] Wang S, Tang X Y and Lou S Y 2004 Chaos, Solitons and Fractals 19 769
[4] Serkin V N 2001 Opt. Commun. 192 237
[5] Stoitchena G 2001 Math. Comput. Simul. 55 621
[6] Ma Z Y and Zheng C L 2005 Commun. Theor. Phys. 43 994
[7] Toda K, Yu S J and Fukuyama F 1999 Rep. Math. Phys. 44 247
[8] Yan Z Y 2003 Czech. J. Phys. 53 89
[9] Bogoyavlenskii O I 1990 Math. USSR. Izv. 34 245
[10] Estvez P G and Hernaez G A 2000 J. Phys. A: Math. Gen. 33 2131
[11] Zhang H P, Chen Y and Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)
[12] Lou S Y 1995 J. Phys. A: Math. Gen. 28 7227
[13] Lou S Y, Tang X Y and Li J 2001 Euro. Phys. J. B 22 473
[14] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[15] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385
[16] Zhang J F, Huang W H and Zheng C L 2002 Acta Phys. Sin. 51 2676 (in Chinese)
[17] Zhang J F 2002 Commun. Theor. Phys. 37 277
[18] Dai C Q and Ni Y Z 2006 Phys. Scr. 74 584
[19] Dai C Q and Zhou G Q 2007 Chin. Phys. 16 1201
[20] Dai C Q and Zhu H P 2013 J. Opt. Soc. Am. B 30 3291
[21] Ma S H and Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)
[22] Ma S H, Wu X H, Fang J P and Zheng C L 2006 Z. Natur. Forsch. 61a 249
[23] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. B 17 2767
[24] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese)
[25] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)
[26] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[27] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)
[28] Li B Q, Ma Y L and Xu M B 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[29] Ma Y L, Li B Q and Sun J Z 2009 Acta Phys. Sin. 58 7042 (in Chinese)
[30] Fang J P, Zheng C L and Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)
[31] Fang J P and Zheng C L 2005 Acta Phys. Sin. 54 670 (in Chinese)
[32] Ma S H, Fang J P, Hong B H and Zheng C L 2009 Chaos, Solitons and Fractals 40 1352
[33] Ma S H and Fang J P 2009 Z. Naturforsch 64a 37
[34] Ma S H, Fang J P and Zheng C L 2009 Chaos, Solitons and Fractals 40 210
[35] Ma S H, Fang J P and Ren Q B 2010 Acta Phys. Sin. 59 4420 (in Chinese)
[36] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[37] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[38] Ma S H, Fang J P and Wu H Y 2013 Z. Natur Forsch. 68a 350
[39] Mei J Q and Zhang H Q 2005 Commun. Theor. Phys. 44 209
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[5] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[6] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[7] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[8] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[9] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[10] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[11] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[12] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[13] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[14] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[15] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
No Suggested Reading articles found!