Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100203    DOI: 10.1088/1674-1056/22/10/100203
GENERAL Prev   Next  

On certain new exact solutions of the Einstein equations for axisymmetric rotating fields

Lakhveer Kaur, R. K. Gupta
School of Mathematics and Computer Applications, Thapar University, Patiala-147 004, Punjab, India
Abstract  We investigate the Einstein field equations corresponding to the Weyl–Lewis–Papapetrou form for an axisymmetric rotating field by using the classical symmetry method. Using the invariance group properties of the governing system of partial differential equations (PDEs) and admitting a Lie group of point transformations with commuting infinitesimal generators, we obtain exact solutions to the system of PDEs describing the Einstein field equations. Some appropriate canonical variables are characterized that transform the equations at hand to an equivalent system of ordinary differential equations and some physically important analytic solutions of field equations are constructed. Also, the class of axially symmetric solutions of Einstein field equations including the Papapetrou solution as a particular case has been found.
Keywords:  Einstein equations      symmetry analysis      exact solutions  
Received:  08 February 2013      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
  04.20.Jb.  
Corresponding Authors:  Lakhveer Kaur, R. K. Gupta     E-mail:  lakhveer712@gmail.com;rajeshgupta@thapar.edu

Cite this article: 

Lakhveer Kaur, R. K. Gupta On certain new exact solutions of the Einstein equations for axisymmetric rotating fields 2013 Chin. Phys. B 22 100203

[1] Stephani H, Kramer D, Maccallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s Field Equations (Cambridge: Cambridge University Press)
[2] Bluman G W and Kumei S 1989 Symmetries and Differential Equations, Applied Mathematical Sciences (New York: Springer-Verlag)
[3] Ibragimov N H 1994 CRC Handbook of Lie Group Analysis of Differential Equations: Symmetries, Exact Solutions and Conservation Laws (Florida: CRC Press)
[4] Ovsiannikov L V 1992 Group Analysis of Differential Equations (New York: Academic Press)
[5] Olver P J 1993 Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics (Berlin: Springer-Verlag)
[6] Zhang J F 1995 Acta Phys. Sin. (Overseas Ed., i.e. Chin. Phys.) 4 401
[7] Msomi A M, Govinder K S and Maharaj S D 2010 J. Phys. A: Math. Theor. 43 285203
[8] Zhang H Q, Fan E G and Li G 1998 Acta Phys. Sin. (Overseas Ed., i.e. Chin. Phys.) 7 649
[9] Ruan H Y and Chen Y X 1999 Acta Phys. Sin. (Overseas Ed., i.e. Chin. Phys.) 8 241
[10] Yao R X, Li Z B and Qu C Z 2004 Chin. Phys. Lett. 21 2077
[11] Liu H, Li J and Zhang Q 2009 J. Comput. Appl. Math. 228 1
[12] Johnpillai A G, Khalique C M and Biswas A 2010 Appl. Math. Comput. 216 3114
[13] Moussa M H M and El-Sheikh R M 2010 Commun. Theor. Phys. 54 603
[14] Singh K, Gupta R K and Kumar S 2011 Appl. Math. Comput. 217 7021
[15] Gupta R K and Singh K 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4189
[16] Wang X Z, Fu H and Fu J L 2012 Chin. Phys. B 21 040201
[17] Islam J N 1985 Rotating Fields in General Relativity (Cambridge: Cambridge University Press)
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[5] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!