Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110306    DOI: 10.1088/1674-1056/22/11/110306
GENERAL Prev   Next  

Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation

Chen Jun-Chao (陈俊超)a, Li Biao (李彪)b, Chen Yong (陈勇)a
a Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
b Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211, China
Abstract  We construct various novel exact solutions of two coupled dynamical nonlinear Schrödinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrödinger equations with time-and space-dependent potentials, nonlinearities, and gain or loss to the coupled dynamical nonlinear Schrödinger equations. Some special types of non-travelling wave solutions, such as periodic, resonant, and quasiperiodically oscillating solitons, are used to exhibit the wave propagations by choosing some arbitrary functions. Our results show that the number of the localized wave of one component is always twice that of the other one. In addition, the stability analysis of the solutions is discussed numerically.
Keywords:  coupled dynamical nonlinear Schrödinger equations      coupled nonlinear Schrödinger equations with time–space modulation      exact solutions  
Received:  16 March 2013      Revised:  24 April 2013      Accepted manuscript online: 
PACS:  03.75.-b  
  05.45.Yv (Solitons)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275072, 11075055, and 11271211), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61021004), the Shanghai Leading Academic Discipline Project, China (Grant No. B412), the National High Technology Research and Development Program of China (Grant No. 2011AA010101), and the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213).
Corresponding Authors:  Chen Yong     E-mail:  ychen@sei.ecnu.edu.cn

Cite this article: 

Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇) Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation 2013 Chin. Phys. B 22 110306

[1] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer)
[2] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[3] Pitaevski L P and Stringari S 2003 Bose-Einstein Condensation (London: Oxford University Press)
[4] Davydov A S 1991 Solitons in Molecular Systems (Dordrecht: Kluwer Academic)
[5] Sulem C and Sulem P 2000 The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (Berlin: Springer)
[6] Vázquez L, Streit L and Pérez-García V M (eds) 1997 Nonlinear Klein-Gordon and Schrödinger Systems: Theory and Applications (Singapore: World Scientific)
[7] Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (New York: Springer)
[8] Mollenauer L F and Gordon J P 2006 Solitons in Optical Fibers (Boston: Academic Press)
[9] Serkin V N, Hasegawa A and Belyaeva T L 2007 2007 Phys. Rev. Lett. 98 074102
[10] Khawaja U A 2010 J. Math. Phys. 51 053506
[11] Liang J W, Xu T, Tang M Y and Liu X D 2013 Nonlinear Analysis: RWA 14 329
[12] Zhao L C and He S L 2011 Phys. Lett. A 375 3017
[13] Kumar V R, Radha R and Wadati M 2010 Phys. Lett. A 374 3685
[14] Radha R and Vinayagam P S 2012 Phys. Lett. A 376 944
[15] Schumayer D and Apagyi B 2001 J. Phys. A: Math. Gen. 34 4969
[16] Zhao D, Luo H G and Chai H Y 2008 Phys. Lett. A 372 5644
[17] Ding C Y, Zhao D and Luo H G 2012 J. Phys. A: Math. Theor. 45 115203
[18] He X G, Zhao D, Li L and Luo H G 2009 Phys. Rev. E 79 056610
[19] Kundu A 2009 Phys. Rev. E 79 015601(R)
[20] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 3902
[21] Pérez-García V M, Torresb P J and Konotop V V 2006 Physica D 221 31
[22] Belmonte-Beitia J, Pérez-García V M, Vekslerchik V and Konotop V V 2008 Phys. Rev. Lett. 100 164102
[23] Belmonte-Beitia J and Cuevas J 2009 J. Phys. A: Math. Theor. 42 165201
[24] Cardoso W B, Avelar A T, Bazeia D and Hussein M S 2010 Phys. Lett. A 374 2356
[25] Yan Y Z and Konotop V V 2009 Phys. Rev. E 80 036607
[26] Yan Y Z and Hang C 2009 Phys. Rev. A 80 063626
[27] Yan Y Z and Jiang D M 2012 Phys. Rev. E 85 056608
[28] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[29] Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
[30] Cardoso W B, Avelar A T and Bazeia D 2012 Phys. Rev. E 86 027601
[31] Chen J C and Li B 2012 Z. Naturforsch. 67a 483
[32] Hu X and Li B 2011 Chin. Phys. B 20 050315
[33] Chen J C, Zhang X F, Li B and Chen Y 2012 Chin. Phys. Lett. 29 070303
[34] Xiong N and Li B 2012 Chin. Phys. Lett. 29 090303
[35] Belmonte-Beitia J, Pérez-García V M and Vekslerchik V 2007 Phys. Rev. Lett. 98 064102
[36] Tang X Y and Shukla P K 2007 Phys. Rev. A 76 013612
[37] Belmonte-Beitia J, Pérez-García V M and Vekslerchik V 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 158
[38] Jing J C and Li B 2013 Chin. Phys. B 22 010303
[39] Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
[40] Wang H and Li B 2011 Chin. Phys. B 20 040203
[41] Li B 2007 Int. J. Mod. Phys. C 18 1187
[42] Chen J C and Li B 2011 Z. Naturforsch. 66a 728
[43] Chen Y, Li B and Zheng Y 2007 Commun. Theor. Phys. 47 143
[44] Li B and Chen Y 2007 Chaos Soliton. Fract. 33 532
[45] Zhong W P and Belić M 2010 Phys, Rev. E 82 047601
[46] Ding C Y, Zhang X F, Zhao D, Luo H G and Liu W M 2011 Phys. Rev. A 84 053631
[47] Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
[48] Brazhnyi V A and Pérez-García V M 2011 Chaos Soliton. Fract. 44 381
[49] Xuan H N and Zuo M 2011 Commun. Theor. Phys. 56 1035
[50] Wang Q, Wen L and Li Z D 2012 Chin. Phys. B 21 080501
[51] Hioe F T 1999 Phys. Rev. Lett. 82 1152
[52] Hioe F T 2003 J. Phys. A: Math. Gen. 36 7307
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[5] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[9] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[10] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[11] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[12] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!