Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030301    DOI: 10.1088/1674-1056/25/3/030301
GENERAL Prev   Next  

Geometric global quantum discord of two-qubit states

Yunlong Xiao(肖运龙)1,2, Tao Li(李陶)3, Shao-Ming Fei(费少明)2,3, Naihuan Jing(景乃桓)1,4, Zhi-Xi Wang(王志玺)3, Xianqing Li-Jost(李先清)2
1. School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China;
2. Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany;
3. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China;
4. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Abstract  

We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.

Keywords:  geometric global quantum discord      two-qubit state  
Received:  19 August 2015      Revised:  30 November 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11275131, 11305105, and 11271138) and Simons Foundation (Grant No. 198129).

Corresponding Authors:  Tao Li     E-mail:  lt881122@sina.com

Cite this article: 

Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清) Geometric global quantum discord of two-qubit states 2016 Chin. Phys. B 25 030301

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Bennett C H, DiVincenzo D, Fuchs C, Mor T, Rains E, Shor P, Smolin J and Wootters W 1999 Phys. Rev. A 59 1070
[4] Scarani V, Lblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[7] Clauser J F and Shimony A 1978 Rep. Prog. Phys. 41 1881
[8] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[9] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[10] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[11] Luo S 2008 Phys. Rev. A 77 022301
[12] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[13] Roa L, Retamal J C and Vaccarezza M A 2011 Phys. Rev. Lett. 107 080401
[14] Li B, Fei S M, Wang Z X and Fan H 2012 Phys. Rev. A 85 022328
[15] Song W, Yu L B, Dong P, Li D C, Yang M and Cao Z L 2013 Sci. China-Phys. Mech. Astron. 56 737
[16] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[17] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[18] Rana S and Parashar P 2012 Phys. Rev. A 85 024102
[19] Hassan A S M, Lari B and Joag P S 2012 Phys. Rev. A 85 024302
[20] Jiang F J, Lü H J, Yan X H and Shi M J 2013 Chin. Phys. B 22 040303
[21] Liu C, Dong Y L and Zhu S Q 2014 Chin. Phys. B 23 060307
[22] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[23] Xu J 2012 J. Phys. A: Math. Theor. 45 405304
[24] Shi M, Sun C, Jiang F, Yan X and Du J 2012 Phys. Rev. A 85 064104l
[1] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[2] Relative entropy of entanglement of two-qubit 'X' states
Huang Jie-Hui(黄接辉), Liu Nian-Hua(刘念华), Liu Jiang-Tao(刘江涛), Yu Tian-Bao(于天宝), and He Xian(何弦). Chin. Phys. B, 2010, 19(11): 110307.
[3] Simple experimental scheme of teleporting a two-qubit state via linear optical elements
Yuan Hong-Chun(袁洪春), Li Heng-Mei(李恒梅), and Qi Kai-Guo(齐开国). Chin. Phys. B, 2006, 15(8): 1686-1689.
No Suggested Reading articles found!