|
|
Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates |
Zhang Cong (张聪)a, Guo Wen-An (郭文安)a b, Feng Shi-Ping (冯世平)a, Yang Shi-Jie (杨师杰)a b |
a Department of Physics, Beijing Normal University, Beijing 100875, China; b State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Exact two-dimensional solutions are constructed for the pseudo-spin-1/2 Bose–Einstein condensates, which are described by the coupled nonlinear Gross–Pitaevskii equations where the intra-and inter-species coupling constants are assumed to be equal. The equations are decoupled by means of re-combinations of the nonlinear terms of the hyperfine states according to the spatial dimensions. The stationary solutions form various spin textures which are identified as skyrmion crystals. In a special case, a crystal of skyrmion–anti-skyrmion pairs is formed in the soliton limit.
|
Received: 25 March 2013
Revised: 14 June 2013
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
02.30.Ik
|
(Integrable systems)
|
|
67.30.he
|
(Textures and vortices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821403) and the National Natural Science Foundation of China (Grant No.11175018). |
Corresponding Authors:
Yang Shi-Jie
E-mail: yangshijie@tsinghua.org.cn
|
Cite this article:
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰) Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates 2013 Chin. Phys. B 22 110308
|
[1] |
Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301
|
[2] |
Doucot B, Goerbig M O, Lederer P and Moessner R 2008 Phys. Rev. B 78 195327
|
[3] |
Moon K, Mori H, Yang K, Girvin S M, MacDonald A H, Zheng L, Yoshioka D and Zhang S C 1995 Phys. Rev. B 51 5138
|
[4] |
Sondhi S L, Karlhede A, Kivelson S A and Rezayi E H 1993 Phys. Rev. B 47 16419
|
[5] |
Timm C, Girvin S M and Fertig H A 1998 Phys. Rev. B 58 10634
|
[6] |
Schmeller A, Eisenstein J P, Pfeiffer L N and West K W 1995 Phys. Rev. Lett. 75 4290
|
[7] |
Wright D C and Mermin N D 1989 Rev. Mod. Phys. 61 385
|
[8] |
Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
|
[9] |
Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 09124
|
[10] |
Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
|
[11] |
Yang S J,Wu Q S, Zhang S N and Feng S 2008 Phys. Rev. A 77 033621
|
[12] |
Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606
|
[13] |
Huhtamäki J A M and Kuopanportti P 2010 Phys. Rev. A 82 053616
|
[14] |
Ruben G, Morgan M J and Paganin D M 2010 Phys. Rev. Lett. 105 220402
|
[15] |
Huhtamäki J A M, Takahashi M, Simula T P, Mizushima T and Machida K 2010 Phys. Rev. A 81 063623
|
[16] |
Scherer D R, Weiler C N, Neely T W and Anderson B P 2007 Phys. Rev. Lett. 98 110402
|
[17] |
Liu C F, and Liu W M 2012 Phys. Rev. A 86 033602
|
[18] |
Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
|
[19] |
Kasamatsu K, Tsubota M and Ueda M 2005 Phys. Rev. A 71 043611
|
[20] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[21] |
Li Y, Zhou X and Wu C 2012 arXiv:1205.2162
|
[22] |
Zhou X, Li Y, Cai Z and Wu C 2013 arXiv:1301.5403
|
[23] |
Bretin V, Rosenbusch P, Chevy F, Shlyapnikov G V and Dalibard J 2003 Phys. Rev. Lett. 90 100403
|
[24] |
Schweikhard V, Coddington I, Engels P, Tung S and Cornell E A 2004 Phys. Rev. Lett. 93 210403
|
[25] |
Zhang Y B, Mäkelä H and Suominen K A 2005 Chin. Phys. Lett. 22 536
|
[26] |
Long C Y, Chen M L and Cai S H 2003 Acta Phys. Sin. 52 1858 (in Chinese)
|
[27] |
Yu Z X, Liang J Q and Jiao Z Y 2004 Chin. Phys. Lett. 23 8
|
[28] |
Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett. 103 250401
|
[29] |
Skyrme T H R 1961 Proc. R. Soc. A 260 127
|
[30] |
Skyrme T H R 1962 Nucl. Phys. 31 556
|
[31] |
Klebanov I 1985 Nucl. Phys. B 262 133
|
[32] |
Bogdanov A N and Yablonskii D A 1989 Sov. Phys. JETP 68 101
|
[33] |
Mühlbauer S, Binz B, Joinetz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
|
[34] |
AbramowitzM and Stegun I A 1964 Handbook of Mathematical Functions (Washington, DC: National Bureau of Standards)
|
[35] |
Kasamatsu K, Tsubota M and Ueda M 2005 Int. J. Mod. Phys. B 19 1835
|
[36] |
Ueda M and Kawaguchi Y 2012 Phys. Reports 520 253
|
[37] |
Yang S J, Wu Q S, Feng S P, Wen Y C and Yu Y 2008 Phys. Rev. A 77 035602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|