Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110308    DOI: 10.1088/1674-1056/22/11/110308
GENERAL Prev   Next  

Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates

Zhang Cong (张聪)a, Guo Wen-An (郭文安)a b, Feng Shi-Ping (冯世平)a, Yang Shi-Jie (杨师杰)a b
a Department of Physics, Beijing Normal University, Beijing 100875, China;
b State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Exact two-dimensional solutions are constructed for the pseudo-spin-1/2 Bose–Einstein condensates, which are described by the coupled nonlinear Gross–Pitaevskii equations where the intra-and inter-species coupling constants are assumed to be equal. The equations are decoupled by means of re-combinations of the nonlinear terms of the hyperfine states according to the spatial dimensions. The stationary solutions form various spin textures which are identified as skyrmion crystals. In a special case, a crystal of skyrmion–anti-skyrmion pairs is formed in the soliton limit.
Keywords:  Gross–Pitaevskii equations      exact solutions      skyrmion crystals  
Received:  25 March 2013      Revised:  14 June 2013      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  02.30.Ik (Integrable systems)  
  67.30.he (Textures and vortices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821403) and the National Natural Science Foundation of China (Grant No.11175018).
Corresponding Authors:  Yang Shi-Jie     E-mail:  yangshijie@tsinghua.org.cn

Cite this article: 

Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰) Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates 2013 Chin. Phys. B 22 110308

[1] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301
[2] Doucot B, Goerbig M O, Lederer P and Moessner R 2008 Phys. Rev. B 78 195327
[3] Moon K, Mori H, Yang K, Girvin S M, MacDonald A H, Zheng L, Yoshioka D and Zhang S C 1995 Phys. Rev. B 51 5138
[4] Sondhi S L, Karlhede A, Kivelson S A and Rezayi E H 1993 Phys. Rev. B 47 16419
[5] Timm C, Girvin S M and Fertig H A 1998 Phys. Rev. B 58 10634
[6] Schmeller A, Eisenstein J P, Pfeiffer L N and West K W 1995 Phys. Rev. Lett. 75 4290
[7] Wright D C and Mermin N D 1989 Rev. Mod. Phys. 61 385
[8] Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
[9] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 09124
[10] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
[11] Yang S J,Wu Q S, Zhang S N and Feng S 2008 Phys. Rev. A 77 033621
[12] Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606
[13] Huhtamäki J A M and Kuopanportti P 2010 Phys. Rev. A 82 053616
[14] Ruben G, Morgan M J and Paganin D M 2010 Phys. Rev. Lett. 105 220402
[15] Huhtamäki J A M, Takahashi M, Simula T P, Mizushima T and Machida K 2010 Phys. Rev. A 81 063623
[16] Scherer D R, Weiler C N, Neely T W and Anderson B P 2007 Phys. Rev. Lett. 98 110402
[17] Liu C F, and Liu W M 2012 Phys. Rev. A 86 033602
[18] Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
[19] Kasamatsu K, Tsubota M and Ueda M 2005 Phys. Rev. A 71 043611
[20] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[21] Li Y, Zhou X and Wu C 2012 arXiv:1205.2162
[22] Zhou X, Li Y, Cai Z and Wu C 2013 arXiv:1301.5403
[23] Bretin V, Rosenbusch P, Chevy F, Shlyapnikov G V and Dalibard J 2003 Phys. Rev. Lett. 90 100403
[24] Schweikhard V, Coddington I, Engels P, Tung S and Cornell E A 2004 Phys. Rev. Lett. 93 210403
[25] Zhang Y B, Mäkelä H and Suominen K A 2005 Chin. Phys. Lett. 22 536
[26] Long C Y, Chen M L and Cai S H 2003 Acta Phys. Sin. 52 1858 (in Chinese)
[27] Yu Z X, Liang J Q and Jiao Z Y 2004 Chin. Phys. Lett. 23 8
[28] Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett. 103 250401
[29] Skyrme T H R 1961 Proc. R. Soc. A 260 127
[30] Skyrme T H R 1962 Nucl. Phys. 31 556
[31] Klebanov I 1985 Nucl. Phys. B 262 133
[32] Bogdanov A N and Yablonskii D A 1989 Sov. Phys. JETP 68 101
[33] Mühlbauer S, Binz B, Joinetz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[34] AbramowitzM and Stegun I A 1964 Handbook of Mathematical Functions (Washington, DC: National Bureau of Standards)
[35] Kasamatsu K, Tsubota M and Ueda M 2005 Int. J. Mod. Phys. B 19 1835
[36] Ueda M and Kawaguchi Y 2012 Phys. Reports 520 253
[37] Yang S J, Wu Q S, Feng S P, Wen Y C and Yu Y 2008 Phys. Rev. A 77 035602
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!