Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090401    DOI: 10.1088/1674-1056/21/9/090401
GENERAL Prev   Next  

New exact solutions of Einstein–Maxwell equations for magnetostatic fields

Nisha Goyal, R. K. Gupta
School of Mathematics and Computer Applications, Thapar University, Patiala-147004, Punjab, India
Abstract  The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein-Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions.
Keywords:  Einstein-Maxwell equations      symmetry reduction method      exact solutions  
Received:  28 November 2011      Revised:  17 February 2012      Accepted manuscript online: 
PACS:  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
  02.20.Sv (Lie algebras of Lie groups)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the Human Resource Development Group Council of Scientific Industrial Research (CSIR), India (Grant No. 09/677(0014)2009-EMR-1).
Corresponding Authors:  Nisha Goyal     E-mail:  goyal.n104@gmail.com

Cite this article: 

Nisha Goyal, R. K. Gupta New exact solutions of Einstein–Maxwell equations for magnetostatic fields 2012 Chin. Phys. B 21 090401

[1] Lobanov A P 1998 Astron. Astrophys. 79 330
[2] Aharonian F A 2002 MNRAS 332 215
[3] Liu Y T, Shapiro S L and Stephens B C 2007 Phys. Rev. D 76 084017
[4] Vlemmings W H T, Diamond P J and Imai H 2006 Nature 440 58
[5] Aguilera D N, Pons J A and Miralles J A 2008 Ap. J. 673 L167
[6] Hennebelle P and Fromang S 2008 Astron. Astrophys. 477 9
[7] Pavlov G G and Bezchastnov V G 2005 Ap. J. 635 L61
[8] Ibrahim A I, Swank J H and Parke W 2003 Ap. J. 584 L17
[9] Reissner H 1916 Ann. Phys. 50 106
[10] Nordstrom G 1918 Verhandl. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 26 1201
[11] Bonnor W B 1953 Proc. Phys. Soc. A 66 145
[12] Misra M and Radhakrishna L Proc. Nat. Inst. Sci. India A 28 632
[13] Garcia-Reyes G and Gonjález G A 2007 Brazilian J. Phys. 37 1094
[14] Stephani H, Kramer D, MacCallum M, Hoenselaers D and Herlt E 2003 Exact Solutions of Einstein Field Equations (2nd edn.) (Cambridge: Cambridge University Press)
[15] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[16] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[17] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[18] Singh K and Gupta R K 2006 Int. J. Eng. Sci. 44 1256
[19] Zhao L, Fu J L and Chen B Y 2010 Chin. Phys. B 19 010301
[20] Li Y, Fang J H and Zhang K J 2011 Chin. Phys. B 20 030201
[21] Ma W X and Chen M 2009 Appl. Math. Comp. 215 2835
[22] Goyal N and Gupta R K 2011 Phys. Scr. 85 015004
[23] Bhutani O P, Singh K and Kalra D K 2003 Int. J. Eng. Sci. 41 769
[24] Steinberg S 1979 Symmetry Methods in Differential Equations. Technical Report No. 367 (Albuquerque: University of New Mexico)
[25] Gandarias M L and Bruzon M S 1998 J. Nonlinear Math. Phys. 5 8
[26] Attallaha S K, El-Sabbagh M F and Ali A T 2007 Commun. Nonlinear Sci. Numer. Simul. 12 1153
[27] Ali A T 2009 Phys. Scr. 79 035006
[28] Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (New York: Springer-Verlag)
[29] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic Press)
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[13] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!