Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050201    DOI: 10.1088/1674-1056/22/5/050201
GENERAL   Next  

Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation

Vikas Kumar, R. K. Gupta, Ram Jiwari
School of Mathematics and Computer Applications, Thapar University, Patiala 147004, India
Abstract  The Lie symmetry analysis is performed for coupled short plus (CSP) equation. We derive the infinitesimals that admit the classical symmetry group. Five types arise depending on the nature of the Lie symmetry generator. In all types, we find reductions in terms of system of ordinary differential equations, and exact solutions of the CSP equation are derived, which are compared with numerical solutions using classical fourth-order Runge-Kutta scheme.
Keywords:  coupled short plus (CSP) equation      Lie symmetric analysis      Runge-Kutta scheme      exact solutions  
Received:  30 September 2012      Revised:  05 November 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  R. K. Gupta     E-mail:  rajeshgupta@thapar.edu

Cite this article: 

Vikas Kumar, R. K. Gupta, Ram Jiwari Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation 2013 Chin. Phys. B 22 050201

[1] Schäfer T and Wayne C E 2004 Physica D 196 90
[2] Feng B F 2012 J. Phys. A: Math. Theor. 45 085202
[3] Olver P J 1993 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[4] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[5] Ovsyannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[6] Liu H and Li J 2009 Nonlinear Anal. 71 2126
[7] Singh K and Gupta R K 2006 Int. J. Eng. Sci. 44 241
[8] Goyal N and Gupta R K 2011 Chin. Phys. B 20 090401
[9] Kumar S, Singh K and Gupta R K 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1529
[10] Gupta R K and Singh K 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4189
[11] Goyal N and Gupta R K 2012 Phys. Scr. 85 015004
[12] Khalique C M and Adem K R 2011 Math. Comput. Modelling 54 184
[13] Zayed E M E and Zedan H A 2003 Chaos Soliton. Fract. 16 133
[14] Zayed E M E, Zedan H A and Gepreel K A 2004 Int. J. Nonlinear Sci. Numer. Simul. 5 221
[15] Zedan H A and Kawala A M 2003 Appl. Math. Comput. 142 271
[16] Kawala A M 2008 Numer. Methods Partial Diff. Eq. 33 870
[17] Biswas A, Yildirim A, Hayat T, Aldossary O M and Sassaman R 2012 Pro. Ro. Acad. Ser. A 13 32
[18] Triki H, Yildirim A, Hayat T, Aldossary O M and Biswas A 2012 Pro. Ro. Acad. Ser. A 13 103
[19] Ebadi G, Kara A H, Petkovic M D, Yildirim A and Biswas A 2012 Pro. Ro. Acad. Ser. A 13 215
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[5] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[11] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[12] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!