Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018801    DOI: 10.1088/1674-1056/25/1/018801
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Scientific and technological challenges toward application of lithium-sulfur batteries

Ya-Xia Yin(殷雅侠)1, Hu-Rong Yao(姚胡蓉)1,2, Yu-Guo Guo(郭玉国)1,2,3
1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shandong Wina Green Power Co., Ltd, Shouguang 262705, China
Abstract  

Recent progress in improving Li-S batteries' cathodes, anodes, and electrolytes via different approaches is summarized. The poor conductivity of sulfur cathodes, the dissolution of polysulfide intermediates, and the high reactivity of metal Li anodes currently motivate a great deal of research. Urgent challenges concerning Li anodes are also emphasized.

Keywords:  lithium-sulfur batteries      sulfur cathode      lithium anode      electrolyte  
Received:  11 May 2015      Revised:  29 June 2015      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
Fund: 

Project supported by the Ministry of Science and Technology (Grant Nos. 2012CB932900 and 2013AA050903), the National Natural Science Foundation of China (Grant Nos. 51225204 and U1301244), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA09010300).

Corresponding Authors:  Yu-Guo Guo     E-mail:  ygguo@iccas.ac.cn

Cite this article: 

Ya-Xia Yin(殷雅侠), Hu-Rong Yao(姚胡蓉), Yu-Guo Guo(郭玉国) Scientific and technological challenges toward application of lithium-sulfur batteries 2016 Chin. Phys. B 25 018801

[1] Guo Y G, Hu J S and Wan L J 2008 Adv. Mater. 20 2878
[2] Yin Y X, Xin S, Guo Y G and Wan L J 2013 Angew. Chem. Int. Ed. 52 13186
[3] D D Herbet J U 1962 U.S. Patent 3043896
[4] Ji X, Lee K T and Nazar L F 2009 Nat. Mater. 8 500
[5] Meyer B 1964 Chem. Rev. 64 429
[6] Li Z, Yuan L X, Yi Z Q, Sun Y M, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z L and Huang Y H 2014 Adv. Energy Mater. 4 1301473
[7] Wang Y, Huang Y, Wang W, Huang C, Yu Z, Zhang H, Sun J, Wang A and Yuan K 2009 Electrochim. Acta 54 4062
[8] Yuan L, Qiu X, Chen L and Zhu W 2009 J. Power Sources 189 127
[9] Xiong S, Xie K, Diao Y and Hong X 2012 Ionics 18 867
[10] Barchasz C, Molton F, Duboc C, Lepretre J C, Patoux S and Alloin F 2012 Anal. Chem. 84 3973
[11] Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews J C, Cui Y and Toney M F 2012 J. Am. Chem. Soc. 134 6337
[12] Canas N A, Wolf S, Wagner N and Friedrich K A 2013 J. Power Sources 226 313
[13] Walus S, Barchasz C, Colin J F, Martin J F, Elkaim E, Lepretre J C and Alloin F 2013 Chem. Commun. 49 7899
[14] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y and Kim H T 2003 J. Electrochem. Soc. 150 A796
[15] Zhang S S 2013 J. Power Sources 231 153
[16] Meyer B 1976 Chem. Rev. 76 367
[17] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G and Wan L J 2012 J. Am. Chem. Soc. 134 18510
[18] Xin S, Guo Y G and Wan L J 2012 Acc. Chem. Res. 45 1759
[19] Zheng G, Yang Y, Cha J J, Hong S S and Cui Y 2011 Nano Lett. 11 4462
[20] Tang C, Zhang Q, Zhao M Q, Huang J Q, Cheng X B, Tian G L, Peng H J and Wei F 2014 Adv. Mater. 26 6100
[21] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J and Zhang Y 2011 J. Am. Chem. Soc. 133 18522
[22] Zhao M Q, Zhang Q, Huang J Q, Tian G L, Nie J Q, Peng H J and Wei F 2014 Nat. Commun. 5 3410
[23] Zhou G, Li L, Wang D W, Shan X Y, Pei S, Li F and Cheng H M 2015 Adv. Mater. 27 641
[24] You Y, Zeng W, Yin Y X, Zhang J, Yang C P, Zhu Y and Guo Y G 2015 J. Mater. Chem. A 3 4799
[25] Xin S, Yin Y X, Wan L J and Guo Y 2013 Part. Part. Syst. Charact. 30 321
[26] Ye H, Yin Y, Xin S and Guo Y 2013 J. Mater. Chem. A 1 6602
[27] Yang C, Yin Y, Ye H, Jiang K, Zhang J and Guo Y 2014 ACS Appl. Mater. Interfaces 6 8789
[28] Zhang J, Ye H, Yin Y and Guo Y 2014 J. Energy Chem. 23 308
[29] Zhang K, Zhao Q, Tao Z and Chen J 2013 Nano Res. 6 38
[30] Sun X G, Wang X, Mayes R T and Dai S 2012 Chemsuschem 5 2079
[31] Mikhaylik Y, Kovalev I, Schock R, Kumaresan K, Xu J and Affinito J 2010 ECS Transactions 25 23
[32] Yoshimatsu I, Hirai T and Yamaki J 1988 J. Electrochem. Soc. 135 2422
[33] Gireaud L, Grugeon S, Laruelle S, Yrieix B and Tarascon J M 2006 Electrochem. Commun. 8 1639
[34] Cohen Y S, Cohen Y and Aurbach D 2000 J. Phys. Chem. B 104 12282
[35] Kanamura K, Tamura H, Shiraishi S and Takehara Z 1995 J. Electroanal. Chem. 394 49
[36] Xu K 2004 Chem. Rev. 104 4303
[37] Peled E 1979 J. Electrochem. Soc. 126 2047
[38] Aurbach D, Zinigrad E, Cohen Y and Teller H 2002 Solid State Ionics 148 405
[39] Leung K and Budzien J L 2010 Phys. Chem. Chem. Phys. 12 6583
[40] Kim S P, van Duin A C T and Shenoy V B 2011 J. Power Sources 196 8590
[41] Aurbach D 2000 J. Power Sources 89 206
[42] Aurbach D, Markovsky B, Levi M D, Levi E, Schechter A, Moshkovich M and Cohen Y 1999 J. Power Sources 81 95
[43] Li W, Zheng H, Chu G, Luo F, Zheng J, Xiao D, Li X, Gu L, Li H, Wei X, Chen Q and Chen L 2014 Faraday Discuss. 176 109
[44] Zheng J, Zheng H, Wang R, Ben L, Lu W, Chen L, Chen L and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
[45] Selim R and Bro P 1974 J. Electrochem. Soc. 121 1457
[46] Aurbach D and Zaban A 1994 J. Electroanal. Chem. 367 15
[47] Xiong S, Xie K, Diao Y and Hong X 2014 J. Power Sources 246 840
[48] Su Y S and Manthiram A 2012 Nat. Commun. 3 1166
[49] Yao H, Yan K, Li W, Zheng G, Kong D, Seh Z W, Narasimhan V K, Liang Z and Cui Y 2014 Energy Environ. Sci. 7 3381
[50] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z and Wei F 2014 Energy Environ. Sci. 7 347
[51] Huang C, Xiao J, Shao Y, Zheng J, Bennett W D, Lu D, Saraf L V, Engelhard M, Ji L, Zhang J, Li X, Graff G L and Liu J 2014 Nat. Commun. 5 3343
[52] Lee Y M, Choi N S, Park J H and Park J K 2003 J. Power Sources 119 964 52B Li N W, Yin Y X, Yang C P and Guo Y G 2015 Adv. Mater.
[53] Li N W, Yin Y X, Yang C P and Guo Y G 2015 Adv. Mater.
[54] Demir-Cakan R, Morcrette M, Gangulibabu, Gueguen A, Dedryvere R and Tarascon J M 2013 Energy Environ. Sci. 6 176
[55] Yang C P, Yin Y, Zhang S F, Li NWand Guo Y G 2015 Nat. Commun. 6 8058
[56] Yan Y, Yin Y X, Xin S, Su J, Guo Y G and Wan L J 2013 Electrochim. Acta 91 58
[57] Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J and Yang Y 2014 J. Mater. Chem. A 2 11660
[58] Gao J, Lowe M A, Kiya Y and Abruna H D 2011 J. Phys. Chem. C 115 25132
[59] Suo L, Hu Y S, Li H, Armand M and Chen L 2013 Nat. Commun. 4 1481
[60] Mikhaylik Y V 2008 USA Patent: 7354680
[61] Lin Z, Liu Z, Fu W, Dudney N J and Liang C 2013 Adv. Funct. Mater. 23 1064
[62] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S and Affinito J 2009 J. Electrochem. Soc. 156 A694
[63] Xiong S, Xie K, Diao Y and Hong X 2012 Electrochim. Acta 83 78
[64] Zhang S S 2012 J. Electrochem. Soc. 159 A920
[65] Zu C and Manthiram A 2014 J. Phys. Chem. Lett. 5 2522
[66] Yan Y, Yin Y, Guo Y and Wan L J 2014 Sci. China Chem. 57 1564
[67] Zheng D L, Gu M, Wang C, Zhang J G, Liu J and Xiao J 2013 J. Electrochem. Soc. 160 A2288
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[3] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[4] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[5] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[6] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[7] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[8] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[9] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[10] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[11] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[12] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[13] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[14] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[15] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
No Suggested Reading articles found!