Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018710    DOI: 10.1088/1674-1056/25/1/018710
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Recent technical advancements enabled atomic resolution CryoEM

Xueming Li(李雪明)
School of Life Sciences, Tsinghua University, Beijing 100084, China
Abstract  

With recent breakthroughs in camera and image processing technologies single-particle electron cryo-microscopy (CryoEM) has suddenly gained the attention of structural biologists as a powerful tool able to solve the atomic structures of biological complexes and assemblies. Compared with x-ray crystallography, CryoEM can be applied to partially flexible structures in solution and without the necessity of crystallization, which is especially important for large complexes and assemblies. This review briefly explains several key bottlenecks for atomic resolution CryoEM, and describes the corresponding solutions for these bottlenecks based on the recent technical advancements. The review also aims to provide an overview about the technical differences between its applications in biology and those in material science.

Keywords:  CryoEM      direct direction detector      electron counting      dose fractionation      three-dimensional classification  
Received:  13 July 2015      Revised:  31 August 2015      Accepted manuscript online: 
PACS:  87.64.Ee (Electron microscopy)  
  87.80.-y (Biophysical techniques (research methods))  
  87.15.B- (Structure of biomolecules)  
Fund: 

Project supported by Tsinghua-Peking Joint Center for Life Sciences, China

Corresponding Authors:  Xueming Li     E-mail:  lixueming@tsinghua.edu.cn

Cite this article: 

Xueming Li(李雪明) Recent technical advancements enabled atomic resolution CryoEM 2016 Chin. Phys. B 25 018710

[1] Frank J, GoldfarbW, Eisenberg D and Baker T S 1978 Ultramicroscopy 3 283
[2] Frank J 1996 Three-dimensional Electron Microscopy of Macromolecular Assembly
[3] Dubochet J, Chang J J, Freeman R, Lepault J and Mcdowall A W 1982 Ultramicroscopy 10 55
[4] Zhang X, Jin L, Fang Q, Hui W H and Zhou Z H 2010 Cell 141 472
[5] Ge P, Tsao J, Schein S, Green T J, Luo M and Zhou Z H 2010 Science 327 689
[6] Grigorieff N and Harrison S C 2011 Curr. Opin. Struct. Biol. 21 265
[7] Zuo J M 2000 Microsc. Res. Tech. 49 245
[8] Meyer R R, Kirkland A I, Dunin-Borkowski R E and Hutchison J L 2000 Ultramicroscopy 85 9
[9] Meyer R R and Kirkland A I 2000 Microsc. Res. Tech. 49 269
[10] Mooney P 2007 Methods Cell Biol. 79 661
[11] McMullan G, Chen S, Henderson R and Faruqi A R 2009 Ultramicroscopy 109 1126
[12] Brilot A F, Chen J Z, Cheng A, Pan J, Harrison S C, Potter C S, Carragher B, Henderson R and Grigorieff N 2012 J. Struct. Biol. 177 630
[13] Berriman J A and Rosenthal P B 2012 Ultramicroscopy 116 106
[14] Henderson R 2015 Arch. Biochem. Biophys. 581 19
[15] McMullan G, Vinothkumar K R and Henderson R 2015 Ultramicroscopy 158 26
[16] Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A and Cheng Y 2013 Nat. Methods 10 584
[17] Bai X C, Fernandez I S, McMullan G and Scheres S H 2013 Elife 2 e00461
[18] Glaeser R M 2013 Nat. Methods 10 475
[19] Allegretti M, Mills D J, McMullan G, Kuhlbrandt W and Vonck J 2014 Elife 3 e01963
[20] Liao M, Cao E, Julius D and Cheng Y 2013 Nature 504 107
[21] Cao E, Liao M, Cheng Y and Julius D 2013 Nature 504 113
[22] Amunts A, Brown A, Bai X C, Llacer J L, Hussain T, Emsley P, Long F, Murshudov G, Scheres S H W and Ramakrishnan V 2014 Science 343 1485
[23] Milazzo A C, Cheng A, Moeller A, Lyumkis D, Jacovetty E, Polukas J, Ellisman M H, Xuong N H, Carragher B and Potter C S 2011 J. Struct. Biol. 176 404
[24] McMullan G, Clark A T, Turchetta R and Faruqi A R 2009 Ultramicroscopy 109 1411
[25] Bammes B E, Rochat R H, Jakana J, Chen D and Chiu W 2012 J. Struct. Biol. 177 589
[26] McMullan G, Faruqi A R, Clare D and Henderson R 2014 Ultramicroscopy 147 156
[27] McMullan G, Faruqi A R, Henderson R, Guerrini N, Turchetta R, Jacobs A and van Hoften G 2009 Ultramicroscopy 109 1144
[28] Li X, Zheng S Q, Egami K, Agard D A and Cheng Y 2013 J. Struct. Biol. 184 251
[29] Grob P, Bean D, Typke D, Li X, Nogales E and Glaeser R M 2013 Ultramicroscopy 33 1
[30] Scheres S H 2014 Elife 3 e03665
[31] Grant T and Grigorieff N 2015 Elife
[32] Scheres S H W 2012 J. Struct. Biol. 180 519
[33] Lu P, Bai X, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres S H W and Shi Y 2014 Nature 512 166
[34] Paulsen C E, Armache J P, Gao Y, Cheng Y and Julius D 2015 Nature 520 511
[35] Kuhlbrandt W 2014 Science 343 1443
[36] Smith M T and Rubinstein J L 2014 Science 345 617
[37] Cheng Y 2015 Cell 161 450
[38] Shaikh T R, Gao H, Baxter W T, Asturias F J, Boisset N, Leith A and Frank J 2008 Nat. Protoc. 3 1941
[39] Ludtke S J, Baldwin P R and Chiu W 1999 J. Struct. Biol. 128 82
[40] Grigorieff N 2007 J. Struct. Biol. 157 117
[41] Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne J L and Subramaniam S 2015 Science 348 1147
[42] Li X, Grigorieff N and Cheng Y 2010 J. Struct. Biol. 172 407
[43] Zhang X, Zhang X and Zhou Z H 2010 J. Struct. Biol. 172 400
[44] Frindt N, Oster M, Hettler S, Gamm B, Dieterle L, KowalskyW, Gerthsen D and Schroder R R 2014 Microsc. Microanal. 20 175
[45] Danev R, Buijsse B, Khoshouei M, Plitzko JMand Baumeister W 2014 Proceedings of the National Academy of Sciences 20 15635
[46] Barton B, Rhinow D, Walter A, Schroder R, Benner G, Majorovits E, Matijevic M, Niebel H, Muller H, Haider M, Lacher M, Schmitz S, Holik P and Kuhlbrandt W 2011 Ultramicroscopy 111 1696
[47] Danev R, Glaeser R M and Nagayama K 2009 Ultramicroscopy 111 312
[48] Russo C J and Passmore L A 2014 Science 346 1377
[49] Russo C J and Passmore L A 2014 Nat. Methods 11 649
[1] The determinant factors for map resolutions obtained using CryoEM single particle imaging method
Yihua Wang(王义华), Daqi Yu(余大启), Qi Ouyang(欧阳颀), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(12): 128702.
[2] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[3] Cryo-ET bridges the gap between cell biology and structural biophysics
Xiao-Fang Cheng(程小芳), Rui Wang(王睿), Qing-Tao Shen(沈庆涛). Chin. Phys. B, 2018, 27(6): 066803.
[4] Structural biology revolution led by technical breakthroughs in cryo-electron microscopy
Chang-Cheng Yin(尹长城). Chin. Phys. B, 2018, 27(5): 058703.
[5] Lipoprotein in cholesterol transport: Highlights and recent insights into its structural basis and functional mechanism
Shu-Yu Chen(陈淑玉), Na Li(李娜), Tao-Li Jin(金桃丽), Lu Gou(缑璐), Dong-Xiao Hao(郝东晓), Zhi-Qi Tian(田芷淇), Sheng-Li Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028702.
[6] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
[7] A new modulated structure in α-Fe2O3 nanowires
Cai Rong-Sheng (蔡鎔声), Shang Lei (商蕾), Liu Xue-Hua (刘雪华), Wang Yi-Qian (王乙潜), Yuan Lu (袁露), Zhou Guang-Wen (周光文). Chin. Phys. B, 2013, 22(10): 107401.
[8] Magnetic properties of DNA-templated Co/Cu naonoparticle chains
Gao You-Hui(高有辉), Wei Ling(卫玲), Gao Chun-Lei(高春蕾), Xia Wei-Xing(夏卫星), and Shindo Daisuke(進藤大輔). Chin. Phys. B, 2010, 19(8): 088103.
No Suggested Reading articles found!