|
|
Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system |
Qin Wu(吴琴) |
School of Information Engineering, Guangdong Medical University, Dongguan 523808, China |
|
|
Abstract We investigate the properties of the ponderomotive squeezing in an optomechanical system coupled to a charged nanomechanical oscillator (NMO) nearby via Coulomb force. We find that the introduction of Coulomb interaction allows the generation of squeezed output light from this system. Our numerical results show that the degree of squeezing can be tuned by the Coulomb coupling strength, the power of laser, and the frequencies of NMOs. Furthermore, the squeezing generated in our approach can be used to measure the Coulomb coupling strength.
|
Received: 20 August 2015
Revised: 17 September 2015
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
46.80.+j
|
(Measurement methods and techniques in continuum mechanics of solids)
|
|
Corresponding Authors:
Qin Wu
E-mail: 905374532@qq.com
|
Cite this article:
Qin Wu(吴琴) Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system 2016 Chin. Phys. B 25 010304
|
[1] |
Kippenberg T J and Vahala K J 2008 Science 321 1172
|
[2] |
Marquardt F and Girvin S M 2009 Physics 2 40
|
[3] |
Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
|
[4] |
Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
|
[5] |
Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
|
[6] |
Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
|
[7] |
Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
|
[8] |
Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Diuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
|
[9] |
Shu J 2011 Chin. Phys. Lett. 28 104203
|
[10] |
Yan X B, Yang L, Tian X D, et al. 2014 Acta Phys. Sin. 63 204201 (in Chinese)
|
[11] |
Yan X B, Gu K H, Fu C B, et al. 2014 Chin. Phys. B 23 114201
|
[12] |
Rocheleau T, Ndukum T, Machlin C, Hertzberg J, Clerk A and Schwab K 2010 Nature 463 72
|
[13] |
Miao H, Danilishin S, Müller-Ebhardt H and Chen Y 2010 New J. Phys. 12 083032
|
[14] |
Liu Y C, Xiao Y F, Luan X S and Wong C W 2015 Sci. China-Phys. Mech. Astro 58 050305
|
[15] |
Yan Y, Gu W J and Li G X 2015 Sci. China-Phys. Mech. Astro. 58 050306
|
[16] |
Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
|
[17] |
Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
|
[18] |
Joshi C, Akram U and Milburn G J 2014 New J. Phys. 16 023009
|
[19] |
Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
|
[20] |
Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A I and Simon C 2014 Phys. Rev. Lett. 112 080503
|
[21] |
Zheng Q and Zhang D 2013 Chin. Phys. Lett. 30 024213
|
[22] |
Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 24 104208
|
[23] |
Woolley M J, Doherty A C, Milburn G J and Schwab K C 2008 Phys. Rev. A 78 062303
|
[24] |
Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
|
[25] |
Asjad M, Agarwal G S, Kim M S, Tombesi P, Di Giuseppe G and Vitali D 2014 Phys. Rev. A 89 023849
|
[26] |
Abadie J, Abbott B P, Abott T D, et al. 2011 Nat. Phys. 7 962
|
[27] |
Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photon. 7 229
|
[28] |
Braunstein S L and Van L P 2005 Rev. Mod. Phys. 77 513
|
[29] |
Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Müller-Ebhardt H and Schnabel R 2010 Phys. Rev. Lett. 104 251102
|
[30] |
Braginsky V and Manukin A 1967 Sov. Phys. JETP 25 653
|
[31] |
Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
|
[32] |
Mancini E and Tombesi P 1994 Phys. Rev. A 49 4055
|
[33] |
Mancini S, Mankó V I and Tombesi P 1997 Phys. Rev. A 55 3042
|
[34] |
Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kum D M 2012 Nature 448 476
|
[35] |
Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M and Painter O 2013 Nature 500 185
|
[36] |
Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012
|
[37] |
Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 017979
|
[38] |
Min F X, Xiao X Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
|
[39] |
Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
|
[40] |
Chen R X, Shen L T and Zheng S B 2015 Phys. Rev. A 91 022326
|
[41] |
Hensinger W K, Utami D W, Goan H S, Schwab K, Monroe C and Milburn G J 2005 Phys. Rev. A 72 041405(R)
|
[42] |
Agarwal G S and Huang M 2012 Phys. Rev. A 85 021801(R)
|
[43] |
Genes C, Vitali D, Tombei D, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
|
[44] |
Kleckner D, Marshall W, de Dood Michiel J A, Dniyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
|
[45] |
Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|