Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016802    DOI: 10.1088/1674-1056/25/1/016802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4

Li Wang(王理)1, Rong-juan Wang(王蓉娟)1, Yuan-yuan Zhu(朱媛媛)2, Zhi-hong Lu(卢志红)3,Rui Xiong(熊锐)1, Yong Liu(刘雍)1, Jing Shi(石兢)1
1. Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
3. School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract  

We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV2O4. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius-Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+ /A-=1.46, which deviates from the 3D Heisenburg model; while the critical exponent α is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.

Keywords:  spinel compounds      specific heat      phase transition      critical behavior  
Received:  05 August 2015      Revised:  09 September 2015      Accepted manuscript online: 
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  64.60.-i (General studies of phase transitions)  
  82.60.Fa (Heat capacities and heats of phase transitions)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB821404), the National Natural Science Foundation of China (Grant Nos. 51172166 and 61106005), the National Science Fund for Talent Training in Basic Science, China (Grant No. J1210061), and the Doctoral Fund of Ministry of Education of China (Grant No. 20110141110007).

Corresponding Authors:  Yong Liu, Jing Shi     E-mail:  yongliu@whu.edu.cn;jshi@whu.edu.cn

Cite this article: 

Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢) Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4 2016 Chin. Phys. B 25 016802

[1] Butt F K, Cao C, Ahmed R, Khan W S, Cao T, Bidin N, Li P, Wan Q, Qu X, Tahir M and Idrees F 2014 Cryst. Eng. Comm. 16 894
[2] Butt F K, Tahir M, Cao C, Idrees F, Ahmed R, Khan W S, Ali Z, Mahmood N, Tanveer M, Mahmood A and Aslam I 2014 ACS Appl. Mater. Inter. 6 13635
[3] Xiao L, Zhao Y, Yin J and Zhang L 2009 Chemistry 15 9442
[4] Butt F K, Cao C, Wan Q, Li P, Idrees F, Tahir M, Khan W S, Ali Z, Zapata M J M, Safdar M and Qu X 2014 Int. J. Hydrogen. Energ. 39 7842
[5] Anderson P W 1956 Phys. Rev. 102 1008
[6] Reehuis M, Krimmel A, Büttgen N, Loidl A and Prokofiev A 2003 Eur. Phys. J. B 35 311
[7] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778
[8] Maitra T and Valentí R 2007 Phys. Rev. Lett. 99 126401
[9] Tsunetsugu H and Motome Y 2003 Phys. Rev. B 68 060405(R)
[10] Motome Y and Tsunetsugu H 2005 Prog. Theor. Phys. Suppl. 160 203
[11] Tchernyshyov O 2004 Phys. Rev. Lett. 93 157206
[12] Niziol S 1973 Phys. Stat. Sol. A 18 K11
[13] Izyumov Yu A, Naish V E and Petrov S B 1979 J. Magn. Magn. Mater. 13 267
[14] Vasiliev A N, Markina M M, Isobe M and Ueda Y 2006 J. Magn. Magn. Mater. 300 e375-
[15] Feng D, Jin G J 2013 Condensed Matter Physics (Volume II) (Beijing: Higher Education Press) (in Chinese) pp. 32-36, 66-69
[16] Zhang L, Han H, Qu Z, Fan J, Ling L, Zhang C, Pi L and Zhang Y 2014 J. Appl. Phys. 115 233910
[17] Luo X, Yang Z R, Sun Y P, Zhu X B, Song W H and Dai J M 2009 J. Appl. Phys. 106 113920
[18] Ebbinghaus S G, Hanss J, Klemm M and Horn S 2004 J. Alloys Compd. 370 75
[19] Lee S H, Louca D, Ueda H, Park S, Sato T, Isobe M, Ueda Y, Rosenkranz S, Zschack P, Íñiguez J, Qiu Y and Osborn R 2004 Phys. Rev. Lett. 93 156407
[20] Tari A 2003 The Specific Heat of Matter at Low Temperatures (London: Imperial College Press) pp. 33, 66, 152-153
[21] Myung-Whun K, Kim J S, Katsufuji T and Kremer R K 2011 Phys. Rev. B 83 024403
[22] Lu D, Jiang P and Xu Z Z 2003 Solid State Physics (Shanghai: Shanghai Science and Technology Press) (in Chinese) pp. 113, 79
[23] Fujimoto M 2005 The Physics of Structural Phase Transitions (Berlin: Springer-Verlag) p. 7
[24] Chandra P 1989 J. Phys: Condens. Matter 1 10067
[25] Mozurkewich G 1991 Phys. Rev. Lett. 66 1645
[26] Gamzatov A G, Khizriev K S, Batdalov A B, Abdulvagidov S B, Aliev A M, Melnikov O V and Gorbenko O Y 2009 Low Temp. Phys. 35 214
[27] Gamzatov A G, Aliev A M, Khizriev K S, Abdulvagidov S B, Batdalov A B, Gorbenko O Y and Melnikov O V 2007 Physica B 390 155
[28] Gamzatov A G, Aliev A M, Khizriev K S, Kamilov I K and Mankevich A S 2011 J. Alloys Compd. 509 8295
[29] Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103
[30] Campostrini M, Hasenbusch M, Pelisseto A, Rossi P and Vicari E 2001 Phys. Rev. B 63 214503
[31] Campostrini M, Hasenbusch M, Pelisseto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520
[32] Oleaga A, Salazar A, Thamizhavel A and Dhar S K 2014 J. Alloys Compd. 617 534
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!