Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017101    DOI: 10.1088/1674-1056/25/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristics of Li diffusion on silicene and zigzag nanoribbon

Yan-Hua Guo(郭艳华)1, Jue-Xian Cao(曹觉先)2, Bo Xu(徐波)3
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China;
2. Department of Physics, Xiangtan University, Xiangtan 411105, China;
3. Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from 0.1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery.
Keywords:  Li diffusion      silicene sheet      silicene nanoribbons      density functional theory  
Received:  29 May 2015      Revised:  02 September 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.46.-w (Structure of nanoscale materials)  
  82.56.Lz (Diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074212 and 11204123) and the Natural Science Foundation of Jiangsu province, China (Grant No. BK20130945).
Corresponding Authors:  Yan-Hua Guo     E-mail:  guoyanhua@njtech.edu.cn

Cite this article: 

Yan-Hua Guo(郭艳华), Jue-Xian Cao(曹觉先), Bo Xu(徐波) Characteristics of Li diffusion on silicene and zigzag nanoribbon 2016 Chin. Phys. B 25 017101

[1] Owen J R 1997 Chem. Soc. Rev. 26 259
[2] Wang Y and Cao G 2008 Adv. Mater. 20 2251
[3] Kasavajjula U, Wang C and Appleby A J 2007 J. Power Sources 163 1003
[4] Kambe N, Dresselhaus M S, Dresselhaus G, Basu S, McGhite A R and Fischer J E 1979 Mater. Sci. Eng. 40 1
[5] Yoo E, Kim J, Hosono E, Zhou H, Kudo T and Honma I 2008 Nano Lett. 8 2277
[6] Ataca C, Akturk E, Ciraci S and Ustune H 2008 Appl. Phys. Lett. 93 043123
[7] Brian J L, Matthew J G, Cory D C, Roberta A D and Ryne P R 2009 Energy Environ. Sci. 2 638
[8] Uthaisar C, Barone V and Peralta J E 2009 J. Appl. Phys. 106 113715
[9] Li X L and Zhi L J 2013 Nanoscale 5 8864
[10] Boukamp B A, Lesh G C and Huggins R A 1981 J. Electrochem. Soc. 128 725
[11] Hwang C M, Lim C H Yang J H and Park J W 2009 J. Power Sources 194 1061
[12] Uehara M, Suzuki J, Tamura K, Sekine K and Takamura T 2005 J. Power Sources 146 441
[13] Pollak E, Salitra G, Baranchugov V and Aurbach D 2007 J. Phys. Chem. C 111 11437
[14] Huang J, Chen H J, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Chin. Phys. Lett. 30 017103
[15] Chan C K, Peng H, Mcllwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31
[16] Peng K, Jie J, Zhang W and Lee S T 2008 Appl. Phys. Lett. 93 033105
[17] Huang R, Fan X, Shen W and Zhu J 2009 Appl. Phys. Lett. 95 133119
[18] Choi J W, McDonough J, Jeong S, Yoo J S, Chan C K and Cui Y 2010 Nano Lett. 10 1409
[19] Kang K, Lee H S, Han D W, Kim G S, Lee D, Lee G, Kang Y M and Jo M H 2010 Appl. Phys. Lett. 96 053110
[20] Wang W and Kumta P N 2010 ACS Nano 4 2233
[21] Li H, Huang X, Chen L, Wu Z and Liang Y 1999 Electrochem. Solid-State Lett. 2 547
[22] Guo H, Zhao H, Yin C and Qin W 2006 J. Alloy. Compd. 426 277
[23] Chan T and Chelikowsky J R 2010 Nano Lett. 10 821
[24] Wang S K and Wang J 2014 Chin. Phys. B 23 037101
[25] Wang R, Xu M S and Pi X D 2015 Chin. Phys. B 24 086807
[26] Wu K H 2015 Chin. Phys. B 24 086802
[27] Meng L, Wang Y L, Zhang L Z, Du S X and Gao H J 2015 Chin. Phys. B 24 086803
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[31] Cao J X, Gong X G and Wu R Q 2005 Phys. Rev. B 72 153410
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!