Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014210    DOI: 10.1088/1674-1056/25/1/014210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica

Liang Yang(杨亮)1,2, Xia Xiang(向霞)1, Xin-Xiang Miao(苗心向)2, Li Li(李莉)1, Xiao-Dong Yuan(袁晓东)2, Zhong-Hua Yan(晏中华)1, Guo-Rui Zhou(周国瑞)2, Hai-Bing Lv(吕海兵)2, Wan-Guo Zheng(郑万国)2, Xiao-Tao Zu(祖小涛)1
1. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field modulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (εr), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.
Keywords:  fused silica      laser-induced damage      particulate contaminants      modulation  
Received:  24 June 2015      Revised:  14 August 2015      Accepted manuscript online: 
PACS:  42.70.Ce (Glasses, quartz)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  68.49.-h (Surface characterization by particle-surface scattering)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61178018) and the Ph.D. Funding Support Program of Education Ministry of China (Grant No. 20110185110007).
Corresponding Authors:  Xia Xiang, Xin-Xiang Miao     E-mail:  xiaxiang@uestc.edu.cn;miaoxinxiang.714@163.com

Cite this article: 

Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛) Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica 2016 Chin. Phys. B 25 014210

[1] Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M J, Riley M O, Feit M D and Hackel R P 2004 Proc. SPIE 5341 84
[2] Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M and Jancaitis K 2007 Appl. Opt. 46 3276
[3] Andre M L 1999 Fusion Eng. Des. 44 43
[4] Yu H W, Jing F, Wei X F, Zheng W G, Zhang X M, Sui Z, Li M, Hu D X, He S B and Peng Z 2008 Proc. SPIE 7131 713112
[5] Tam A C, Leung W P, Zapka W and Ziemlich W 1992 J. Appl. Phys. 71 3515
[6] Sommer S C, Stowers I F and van Doren D E 2003 J. IEST 46 85
[7] Feit M D, Rubenchik A M, Faux D R, Riddle R A, Shapiro A B, Eder D C, Penetrante B M, Milam D, Genin F Y and Kozlowski M R 1997 Proc. SPIE 3047 480
[8] Deng H X, Zu X T, Xiang X and Sun K 2010 Phys. Rev. Lett. 105 1136031
[9] Stuart B, Feit M, Herman S, Rubenchik A, Shore B and Perry M 1996 Phys. Rev. B 53 1749
[10] Kuzuu N, Yoshida K, Yoshida H, Kamimura T and Kamisugi N 1999 Appl. Opt. 38 2510
[11] Neauport J, Lamaignere L, Bercegol H, Pilon F and Birolleau J C 2005 Opt. Express 13 10163
[12] Lighty J S, Silcox G D, Pershing D W, Cundy V A and Linz D G 1990 Environmental Science & Technology 24 750
[13] Palmier S, Garcia S and Rullier J L 2008 Opt. Eng. 47 084203
[14] Honig J, Norton M A, Hollingsworth W G, Donohue E E and Johnson M A 2005 Proc. SPIE 5647 129
[15] Génin F Y, Feit M D, Kozlowski M R, Rubenchik A M, Salleo A and Yoshiyama J 2000 Appl. Opt. 39 3654
[16] Mainguy S, Tovena-Pecault I and Le Garrec B 2005 Proc. SPIE 5991 59910G1
[17] Honig J 2004 Opt. Eng. 43 2904
[18] Oubre C and Nordlander P 2004 J. Phys. Chem. B 108 17740
[19] Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D and Zheng W G 2012 Chin. Phys. B 21 044212
[20] Bloembergen N 1973 Appl. Opt. 12 661
[21] Li L, Xiang X, Zu X T, Wang H J, Yuan X D, Jiang X D, Zheng W G and Dai W 2011 Chin. Phys. B 20 074209
[22] Ye Y Y, Yuan X D, Xiang X, Dai W, Chen M, Miao X X, Lv H B, Wang H J and Zheng W G 2011 Opt. Lasers Eng. 49 536
[23] Cheng J, Chen M J, Liao W, Wang H J, Xiao Y and Li M Q 2013 Opt. Express 21 16799
[24] Stolz C J, Feit M D and Pistor T V 2006 Appl. Opt. 45 1594
[25] Zhang C L, Liu C M, Xiang X, Wang Z G, Li L, Yuan X D, He S B and Zu X T 2012 Acta Phys. Sin. 61 164207 (in Chinese)
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[7] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[8] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[9] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[10] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[14] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[15] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
No Suggested Reading articles found!