Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014209    DOI: 10.1088/1674-1056/25/1/014209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal

Tao Chen(陈滔), Rong Shu(舒嵘), Ye Ge(葛烨), Zhuo Chen(陈卓)
Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  

We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals.

Keywords:  optical parametric oscillator (OPO)      different frequency generation (DFG)      mid-infrared (MIR)  
Received:  25 May 2015      Revised:  19 August 2015      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.70.Mp (Nonlinear optical crystals)  
  42.72.Ai (Infrared sources)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61505236), the Innovation Program of Shanghai Institute of Technical Physics, China (Grant No. CX-2), and the Program of Shanghai Subject Chief Scientist, China (Grant No. 14XD1404000).

Corresponding Authors:  Tao Chen     E-mail:  chentao@sitp.ac.cn

Cite this article: 

Tao Chen(陈滔), Rong Shu(舒嵘), Ye Ge(葛烨), Zhuo Chen(陈卓) Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal 2016 Chin. Phys. B 25 014209

[1] Willer U, Saraji M, Khorsandi A, Geiser P and Schade W 2006 Opt. Lasers Eng. 44 699
[2] Molocher B 2005 Proc. SPIE 5989 598902
[3] Jiang P, Chen T, Yang D, Wu B, Cai S and Shen Y 2013 Laser Phys. Lett. 10 115405
[4] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett. 31 24204
[5] Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T and Jin G Y 2015 Acta Phys. Sin. 64 44203 (in Chinese)
[6] Wang L, Liu Q, Ji E, Chen H and Gong M 2014 Appl. Opt. 53 6729
[7] Chen T, Wei K, Jiang P, Wu B and Shen Y 2012 Appl. Opt. 51 6881
[8] Chen T, Jiang P, Yang D, Hu C, Wu B and Shen Y 2013 Appl. Opt. 52 6316
[9] Wei K, Jiang P, Wu B, Chen T and Shen Y 2015 Chin. Phys. B 24 024217
[10] Zhu J, Xu L, Lin Q, Zhong X, Han H and Wei Z 2013 Chin. Phys. B 22 054210
[11] Jiang P, Chen T, Wu B, Yang D, Hu C, Wu P and Shen Y 2015 Opt. Express 23 2633
[12] Sacks Z, Gayer O, Tal E and Arie A 2010 Opt. Express 18 12669
[13] Naraniya O P, Shenoy M R and Thyagarajan K 2014 Opt. Commun. 316 74
[14] Dearborn M E, Koch K, Moore G T and Diels J C 1998 Opt. Lett. 23 759
[15] Liu Y H, Xie Z D, Ling W, Yuan Y, Lv X J, Lu J, Hu X P, Zhao G and Zhu S N 2011 Opt. Express 19 17500
[16] Porat G, Gayer O and Arie A 2010 Opt. Lett. 35 1401
[17] Chen T, Wu B, Liu W, Jiang P, Kong J and Shen Y 2011 Opt. Lett. 36 921
[18] Liu Y H, Lv X J, Xie Z D, Hu X P, Yuan Y, Lu J, Zhao L N and Zhu S N 2012 Appl. Phys. B 106 267
[19] Chen T, Wu B, Jiang P, Yang D and Shen Y 2013 IEEE Photon. Techn. Lett. 25 2000
[20] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[21] Gorelik P V, Wong F N, Kolker D and Zondy J J 2006 Opt. Lett. 31 2039
[22] Godard A, Raybaut M, Lefebvre M, Michel A M and Péalat M 2012 Appl. Phys. B 109 567
[23] Chen T, Jiang P, Wu B, Shu R, Hu C and Shen Y 2014 Opt. Express 22 26900
[24] Shoji I, Kondo T, Kitamoto A, Shirane M and Ito R 1997 JOSA B 14 2268
[25] Smith A V, Gehr R J and Bowers M S 1999 JOSA B 16 609
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[4] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[5] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[8] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[9] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[10] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[11] The influence of stimulated temperature-dependent emission cross section on intracavity optical parametric oscillator
S Samimi, A Keshavarz. Chin. Phys. B, 2017, 26(2): 024207.
[12] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[13] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[14] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[15] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
No Suggested Reading articles found!