Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013105    DOI: 10.1088/1674-1056/25/1/013105
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

New developments in the multiscale hybrid energy density computational method

Min Sun(孙敏)1, Shanying Wang(王山鹰)2, Dianwu Wang(王殿武)1, Chongyu Wang(王崇愚)1,2
1. Central Iron and Steel Research Institute, Beijing 100081, China;
2. Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Further developments in the hybrid multiscale energy density method are proposed on the basis of our previous papers. The key points are as follows. (i) The theoretical method for the determination of the weight parameter in the energy coupling equation of transition region in multiscale model is given via constructing underdetermined equations. (ii) By applying the developed mathematical method, the weight parameters have been given and used to treat some problems in homogeneous charge density systems, which are directly related with multiscale science. (iii) A theoretical algorithm has also been presented for treating non-homogeneous systems of charge density. The key to the theoretical computational methods is the decomposition of the electrostatic energy in the total energy of density functional theory for probing the spanning characteristic at atomic scale, layer by layer, by which the choice of chemical elements and the defect complex effect can be understood deeply. (iv) The numerical computational program and design have also been presented.
Keywords:  hybrid energy density method      weight parameters of site energy      decomposition of electrostatic energy  
Received:  17 November 2015      Accepted manuscript online: 
PACS:  31.15.E-  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402 ) and the National Natural Science Foundation of China (Grant No. 51071091).
Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Min Sun(孙敏), Shanying Wang(王山鹰), Dianwu Wang(王殿武), Chongyu Wang(王崇愚) New developments in the multiscale hybrid energy density computational method 2016 Chin. Phys. B 25 013105

[1] Babcock W 2001 MaterialEASE 14: Computational Materials Science: A Primer (AMPTIAC)
[2] Clementi E 1988 Philos Trans R. Soc. London A 326 445
[3] Wang C Y, Liu S Y and Han L G 1990 Phys. Rev. B 41 1359
[4] Wang C Y, Liu S Y and Han L G 1996 Defect Dissusion Forum 73 134
[5] Abraham F F, Broughton J Q, Bernstein N, et al. 1998 Comput. Phys. Commun. 12 538
[6] Broughton J Q and Abraham F F 1998 Phys. Rev. B 60 2391
[7] Choly N, Lu G, Weinan E and Kaxiras E 2005 Phys. Rev. B 71 094101
[8] Eichinger M, Tavan P, Hutter J and Parrinello M 1999 J. Chem. Phys. 110 10452
[9] Ogata S and Belkada R 2004 Comput. Mater. Sci. 30 189
[10] Zhang S L, Mielke S L, Khare R, Troya D, Ruoff R S and Schatz G C 2005 Phys. Rev. B 71 15403
[11] Wang C Y and Zhang X 2006 Current Opinion in Solid State and Materials Science 10 2
[12] Zhang X and Wang C Y 2008 Eur. Phys. J. B 65 515
[13] Wang C Y 2004 Complex Syst. Complex Sci. 1 9 (in Chinese)
[14] Wang C Y 2004 Multi-scale Modeling and Related Approaches (In: The 3rd Japan-China Symposium on Computer Aided Materials and Molecular Design-crossover Challenges: Science on Prediction and for Proactive Engineering) October 24-26, 2004, Tokyo, Japan
[15] Li Z, Wang C Y, Zhang X, Ke S H and Yang W T 2008 J. Phys.: Condens. Matter 20 345225
[16] Volker Heine 1980 (New York: Academic Press) 35 92
[17] Gyorffy B and Pickett W 1977 Superconductivity in d and f Band Metals: Report of Rochester Conference (Douglas D, Ed.) (New York: Am. Inst. Phys)
[18] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[19] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Du J P, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 015007
[25] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[26] Ellis D E, Benesh G A and Byrom 1979 Phys. Rev. B 20 1198
[27] Ellis D E 1981 Actinides in Perspective. Proceedings of the Actinides-1981 Conference, 10-15 September 1981 Pacific Grove, California USA
[1] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[4] Polarization-resolved Raman spectra of α -PtO2
Zhanhong Lei(雷展宏), Weiliang Wang(王伟良), and Juncong She(佘峻聪). Chin. Phys. B, 2021, 30(4): 047102.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[7] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[8] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[9] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[12] Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering
Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani. Chin. Phys. B, 2017, 26(12): 123101.
[13] CN bond orientation in metal carbonitride endofullerenes:A density functional theory study
Zhu-Xia Zhang(张竹霞), Yong Zhang(张勇), Wen-Hua Xue(薛文华), Wei Jia(贾伟), Cai-Li Zhang(张彩丽), Chun-Xia Li(李春霞), Peng Cui(崔鹏). Chin. Phys. B, 2017, 26(12): 123102.
[14] Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(12): 123103.
[15] Thermodynamic properties of ZnSe under pressure and with variation in temperature
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(9): 093105.
No Suggested Reading articles found!