Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 123103    DOI: 10.1088/1674-1056/26/12/123103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy

Najm Ul Aarifeen, A Afaq
Center of Excellence in Solid State Physics, University of the Punjab, Quaid e Azam Campus, Lahore-54590, Pakistan
Abstract  Thermodynamic properties of Cd0.25Zn0.75Se alloy are studied using quasi harmonic model for pressure range of 0 GPa-10 GPa and temperature range 0 K-1000 K. The structural optimization is obtained by self-consistent field calculations and full-potential linearized muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is Hubbard potential. The effects of temperature and pressure on bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient, and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy, and Debye temperature are found to be decreased on increasing temperature while there is an increasing behavior with rise of the pressure. Whereas the internal energy has increasing trend with the rise in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with rise of pressure (temperature).
Keywords:  density functional theory      Helmholtz energy      Debye temperature      entropy  
Received:  10 August 2017      Revised:  25 August 2017      Accepted manuscript online: 
PACS:  31.15.E-  
  51.30.+i (Thermodynamic properties, equations of state)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  65.40.gd (Entropy)  
Corresponding Authors:  A Afaq     E-mail:  aafaq.cssp@pu.edu.pk

Cite this article: 

Najm Ul Aarifeen, A Afaq Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy 2017 Chin. Phys. B 26 123103

[1] Tanaka K 1989 Phys. Rev. B 39 1270
[2] Gu Y, Kuskovsky I L, Robinson R, Herman I, Neumark G, Zhou X, Guo S, Munoz M and Tamargo M 2005 Solid State Commun. 134 677
[3] Razykov T 1988 Thin Solid Films 164 301
[4] Burger A and Roth M 1984 J. Crystal Growth 70 386
[5] Nasibov A, Korostelin Y, Shapkin P, Suslina L, Fedorov D and Markov L 1989 Solid State Commun. 71 867
[6] Sutrave D, Shahane G, Patil V and Deshmukh L 2000 Mater. Chem. Phys. 65 298
[7] Kishore V, Saraswat V K, Saxena N S and Sharma T P 2005 28 431
[8] Schreder B, Kümmell T, Bacher G, Forchel A, Landwehr G, Materny A and Kiefer W 2000 J. Crystal Growth 214 787
[9] Trager-Cowan C, Bagnall D, McGow F, et al. 1996 J. Crystal Growth 159 618
[10] Murali K and Austine A 2009 Chalcogenide Lett. 6 23
[11] Deo S R, Singh A K, Deshmukh L, Paliwal L, Singh R and Adhikari R 2014 Journal of Saudi Chemical Society 18 327
[12] Loglio F, Telford A, Salvietti E, Innocenti M, Pezzatini G, Cammelli S, DAcapito F, Felici R, Pozzi A and Foresti M 2008 Electrochimica Acta 53 6978
[13] Nguyen H Y, de Marcillac W D, Lethiec C, et al. 2014 Optical Materials 36 1534
[14] Gupta P, Maiti B, Maity A, Chaudhuri S and Pal A 1995 Thin Solid Films 260 75
[15] Mezrag F, Mohamed W K and Bouarissa N 2010 Physica B:Condens. Matter 405 2272
[16] Suzuki Ki and Adachi S 1998 J. Appl. Phys. 83 1018
[17] Chandramohan R, Sanjeeviraja C, Rajendran S, Mahalingam T, Jayachandran M and Chockalingam M J 1998 Bull. Electrochem. 14 402
[18] Margapoti E, Alves F M, Mahapatra S, et al. 2012 New J. Phys. 14 043038
[19] Ameri M, Fodil M, Aoumeur-Benkabou F Z, Mahdjoub Z, Boufadi F and Bentouaf A 2012 Mater. Sci. Appl. 3 768
[20] Korozlu N, Colakoglu K, Deligoz E and Ciftci Y 2011 Opt. Commun. 284 1863
[21] Bouamama K, Djemia P, Lebga N and Kassali K 2009 Semicond. Sci. Technol. 24 045005
[22] Benosman N, Amrane N and Aourag H 2000 Physica B:Conden. Matter 275 316
[23] Peierls R E 1955 Quantum theory of solids, Vol. 23(Oxford:Oxford University Press)
[24] Ojha B, Nayak P and Behera S 2000 Pramana-J. Phys. 54
[25] Gunnarsson O, Andersen O, Jepsen O and Zaanen J 1989 Phys. Rev. B 39 1708
[26] Madsen G K and Novák P 2005 Europhys. Lett. 69 777
[27] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 An augmented plane wave + local orbitals program for calculating crystal properties
[28] Otero-de-la Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232
[29] Francisco E, Recio J, Blanco M, Pendás A M and Costales A 1998 J. Phys. Chem. A 102 1595
[30] Chaplot S L, Mittal R and Choudhury N 2010 Thermodynamic Properties of Solids:Experiments and Modeling (John Wiley & Sons)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[12] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[13] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
No Suggested Reading articles found!