Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 016801    DOI: 10.1088/1674-1056/ab5785

Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study

Yunlei Wang(王云蕾)1, Yuhong Chen(陈玉红)2, Yunhui Wang(王允辉)3
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China;
2 Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Using first-principles calculations based on density functional theory (DFT), we investigate the potential hydrogen storage capacity of the Na-decorated net-Y single layer nanosheet. For double-side Na decoration, the average binding energy is 1.54 eV, which is much larger than the cohesive energy of 1.13 eV for bulk Na. A maximum of four H2 molecules can be adsorbed around each Na with average adsorption energies of 0.25-0.32 eV/H2. Also, H2 storage gravimetric of 8.85 wt% is obtained, and this meets the U.S. Department of Energy (DOE) ultimate target. These results are instrumental in seeking a promising hydrogen energy carrier.
Keywords:  hydrogen storage      net-Y      storage gravimetric      density functional theory  
Received:  01 August 2019      Revised:  11 November 2019      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  02.70.Tt (Justifications or modifications of Monte Carlo methods)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804169) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20180741).
Corresponding Authors:  Yuhong Chen, Yunhui Wang     E-mail:;

Cite this article: 

Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉) Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study 2020 Chin. Phys. B 29 016801

[1] Abe J O, Popoola A P I, Ajenifuja E and Popoola O M 2019 Int. J. Hydrogen Energy 44 15072
[2] Staffell I, Scamman D P, Abad A V and Balcombe P 2019 Energy Environ. Sci. 12 463
[3] Zhao D, Yuan D and Zhou H C 2008 Energy Environ. Sci. 1 222
[4] Barthelemy H, Weber M and Barbier F 2017 Int. J. Hydrogen Energy 42 7254
[5] DOE target for H2 storage http://www1eereenergygov/hydrogenandfuelcells/storage/
[6] Lochan R C and Head-Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357
[7] Eigen N, Keller C, Dornheim M, Klassen T and Bormann R 2007 Scr. Mater. 56 847
[8] Sakintuna B, Lamaridarkrim F and Hirscher M 2007 Int. J. Hydrogen Energy 32 1121
[9] Lyu J Z, Andrey M L and Viktor N K 2019 Chin. Phys. B 28 098801
[10] Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O and Hlil E K 2012 Chin. Phys. B 21 097501
[11] Zhang F C, Liu Y and Zhang W B 2015 Chin. Phys. Lett. 32 057302
[12] Wang Y S, Yuan P F, Li M, Sun Q and Jia Y 2011 Chin. Phys. Lett. 28 116801
[13] Mellmann D, Sponholz P, Junge H and Beller M 2016 Chem. Soc. Rev. 45 3954
[14] Joo F 2008 ChemSusChem. 1 805
[15] Ströbel R, Garche J, Moseley P T, Jörissen L and Wolf G 2006 J. Power Sources 159 781
[16] Pan R, Fan X, Luo Z and An Y 2016 Comput. Mater. Sci. 124 106
[17] Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
[18] Wang X Q, Wang Y S, Wang Y C, Wang F, Sun Q and Jia Y 2014 Chin. Phys. Lett. 31 026801
[19] Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 107306
[20] Wang L, Chen X, Du H, Yuan Y, Qu H and Zou M 2018 Appl. Surf. Sci. 427 1030
[21] Xu B, Wang Y S, Song N H, Zhang J, Meng L and Yi L 2016 Chin. Phys. Lett. 33 016802
[22] Zhang C, Tang S L, Deng M S and Du Y W 2018 Chin. Phys. B 27 066103
[23] Zhao L, Xu B Z, Jia J and Wu H S 2017 Comput. Mater. Sci. 137 107
[24] Liu X Y, He J, Yu J X, Li Z X and Fan Z Q 2014 Chin. Phys. B 23 067303
[25] Ruan W, Wu D L, Luo W L, Yu X G and Xie A D 2014 Chin. Phys. B 23 023102
[26] Ruan W, Xie A D, Yu X G and Wu D L 2011 Chin. Phys. B 20 043104
[27] Li X D, Tang Y J, Cheng X L and Zhang H 2011 Chin. Phys. Lett. 28 113102
[28] Yu L M, Shi G S, Wang Z G, Ji G F and Lu Z P 2009 Chin. Phys. Lett. 26 086804
[29] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[30] Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M and Ruoff R 2010 Carbon 48 630
[31] Lee C, Wei X and Kysar J W 2008 Science 321 385
[32] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[33] Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M and Shinohara H 2010 Appl. Phys. Lett. 96 263105
[34] Lee H C, Liu W W, Chai S P and Mohaned A R 2016 Procedia Chem. 19 916
[35] Reunchan P and Jhi S H 2011 Appl. Phys. Lett. 98 093103
[36] Mashoff T, Takamura M, Tanabe S, Hibino H, Beltram F and Heun S 2013 Appl. Phys. Lett. 103 013903
[37] Choudhary A, Malakkal L, Siripurapu R K, Szpunar B and Szpunar J 2016 Int. J. Hydrogen Energy 41 17652
[38] Mingos D M P 2001 J. Organomet. Chem. 635 1
[39] Kubas G J 2001 J. Organomet. Chem. 635 37
[40] Cabria I, López M J and Fraile S 2012 J. Phys. Chem. C 116 21179
[41] Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
[42] Sigal A, Rojas M I and Leiva E P M 2011 Phys. Rev. Lett. 107 158701
[43] Li S and Jena P 2006 Phys. Rev. Lett. 97 209601
[44] Wang Y, Meng Z, Liu Y, You D, Wu K, Lv J, Wang X, Deng K, Rao D and Lu R 2015 Appl. Phys. Lett. 106 063901
[45] Bi L, Yin J, Huang X, Wang Y and Yang Z 2019 Int. J. Hydrogen Energy 44 2934
[46] Medeiros P V, de Brito Mota F, Mascarenhas A J S and de Castilho C M C 2010 Nanotechnology 21 115701
[47] Zhang Y and Cheng X 2018 Chem. Phys. 505 26
[48] Ataca C, Aktürk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
[49] Chandrakumar K R and Ghosh S K 2008 Nano Lett. 8 13
[50] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924
[51] Rong J, Dong H, Feng J, Wang X, Zhang Y, Yu X and Zhan Z 2018 Carbon 135 21
[52] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[53] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] MacDonald A H 1978 Phys. Rev. B 18 5897
[56] Choi S M and Jhi S H 2009 Appl. Phys. Lett. 94 153108
[57] Antipina L Y, Avramov P V, Sakai S, Naramoto H, Ohtomo M, Entani S, Matsumoto Y and Sorokin P B 2012 Phys. Rev. B 86 085435
[58] Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M and Wu X 2017 Appl. Surf. Sci. 399 463
[59] Mayo S L, Olafson B D and Goddard I I I W A 1990 J. Phys. Chem. 94 8897
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!