CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study |
Yunlei Wang(王云蕾)1, Yuhong Chen(陈玉红)2, Yunhui Wang(王允辉)3 |
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; 2 Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; 3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract Using first-principles calculations based on density functional theory (DFT), we investigate the potential hydrogen storage capacity of the Na-decorated net-Y single layer nanosheet. For double-side Na decoration, the average binding energy is 1.54 eV, which is much larger than the cohesive energy of 1.13 eV for bulk Na. A maximum of four H2 molecules can be adsorbed around each Na with average adsorption energies of 0.25-0.32 eV/H2. Also, H2 storage gravimetric of 8.85 wt% is obtained, and this meets the U.S. Department of Energy (DOE) ultimate target. These results are instrumental in seeking a promising hydrogen energy carrier.
|
Received: 01 August 2019
Revised: 11 November 2019
Accepted manuscript online:
|
PACS:
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
31.15.E-
|
|
|
02.70.Tt
|
(Justifications or modifications of Monte Carlo methods)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804169) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20180741). |
Corresponding Authors:
Yuhong Chen, Yunhui Wang
E-mail: 1620174396@cpu.edu.cn;yhwang@njupt.edu.cn
|
Cite this article:
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉) Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study 2020 Chin. Phys. B 29 016801
|
[1] |
Abe J O, Popoola A P I, Ajenifuja E and Popoola O M 2019 Int. J. Hydrogen Energy 44 15072
|
[2] |
Staffell I, Scamman D P, Abad A V and Balcombe P 2019 Energy Environ. Sci. 12 463
|
[3] |
Zhao D, Yuan D and Zhou H C 2008 Energy Environ. Sci. 1 222
|
[4] |
Barthelemy H, Weber M and Barbier F 2017 Int. J. Hydrogen Energy 42 7254
|
[5] |
DOE target for H2 storage http://www1eereenergygov/hydrogenandfuelcells/storage/
|
[6] |
Lochan R C and Head-Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357
|
[7] |
Eigen N, Keller C, Dornheim M, Klassen T and Bormann R 2007 Scr. Mater. 56 847
|
[8] |
Sakintuna B, Lamaridarkrim F and Hirscher M 2007 Int. J. Hydrogen Energy 32 1121
|
[9] |
Lyu J Z, Andrey M L and Viktor N K 2019 Chin. Phys. B 28 098801
|
[10] |
Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O and Hlil E K 2012 Chin. Phys. B 21 097501
|
[11] |
Zhang F C, Liu Y and Zhang W B 2015 Chin. Phys. Lett. 32 057302
|
[12] |
Wang Y S, Yuan P F, Li M, Sun Q and Jia Y 2011 Chin. Phys. Lett. 28 116801
|
[13] |
Mellmann D, Sponholz P, Junge H and Beller M 2016 Chem. Soc. Rev. 45 3954
|
[14] |
Joo F 2008 ChemSusChem. 1 805
|
[15] |
Ströbel R, Garche J, Moseley P T, Jörissen L and Wolf G 2006 J. Power Sources 159 781
|
[16] |
Pan R, Fan X, Luo Z and An Y 2016 Comput. Mater. Sci. 124 106
|
[17] |
Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
|
[18] |
Wang X Q, Wang Y S, Wang Y C, Wang F, Sun Q and Jia Y 2014 Chin. Phys. Lett. 31 026801
|
[19] |
Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 107306
|
[20] |
Wang L, Chen X, Du H, Yuan Y, Qu H and Zou M 2018 Appl. Surf. Sci. 427 1030
|
[21] |
Xu B, Wang Y S, Song N H, Zhang J, Meng L and Yi L 2016 Chin. Phys. Lett. 33 016802
|
[22] |
Zhang C, Tang S L, Deng M S and Du Y W 2018 Chin. Phys. B 27 066103
|
[23] |
Zhao L, Xu B Z, Jia J and Wu H S 2017 Comput. Mater. Sci. 137 107
|
[24] |
Liu X Y, He J, Yu J X, Li Z X and Fan Z Q 2014 Chin. Phys. B 23 067303
|
[25] |
Ruan W, Wu D L, Luo W L, Yu X G and Xie A D 2014 Chin. Phys. B 23 023102
|
[26] |
Ruan W, Xie A D, Yu X G and Wu D L 2011 Chin. Phys. B 20 043104
|
[27] |
Li X D, Tang Y J, Cheng X L and Zhang H 2011 Chin. Phys. Lett. 28 113102
|
[28] |
Yu L M, Shi G S, Wang Z G, Ji G F and Lu Z P 2009 Chin. Phys. Lett. 26 086804
|
[29] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[30] |
Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M and Ruoff R 2010 Carbon 48 630
|
[31] |
Lee C, Wei X and Kysar J W 2008 Science 321 385
|
[32] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[33] |
Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M and Shinohara H 2010 Appl. Phys. Lett. 96 263105
|
[34] |
Lee H C, Liu W W, Chai S P and Mohaned A R 2016 Procedia Chem. 19 916
|
[35] |
Reunchan P and Jhi S H 2011 Appl. Phys. Lett. 98 093103
|
[36] |
Mashoff T, Takamura M, Tanabe S, Hibino H, Beltram F and Heun S 2013 Appl. Phys. Lett. 103 013903
|
[37] |
Choudhary A, Malakkal L, Siripurapu R K, Szpunar B and Szpunar J 2016 Int. J. Hydrogen Energy 41 17652
|
[38] |
Mingos D M P 2001 J. Organomet. Chem. 635 1
|
[39] |
Kubas G J 2001 J. Organomet. Chem. 635 37
|
[40] |
Cabria I, López M J and Fraile S 2012 J. Phys. Chem. C 116 21179
|
[41] |
Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
|
[42] |
Sigal A, Rojas M I and Leiva E P M 2011 Phys. Rev. Lett. 107 158701
|
[43] |
Li S and Jena P 2006 Phys. Rev. Lett. 97 209601
|
[44] |
Wang Y, Meng Z, Liu Y, You D, Wu K, Lv J, Wang X, Deng K, Rao D and Lu R 2015 Appl. Phys. Lett. 106 063901
|
[45] |
Bi L, Yin J, Huang X, Wang Y and Yang Z 2019 Int. J. Hydrogen Energy 44 2934
|
[46] |
Medeiros P V, de Brito Mota F, Mascarenhas A J S and de Castilho C M C 2010 Nanotechnology 21 115701
|
[47] |
Zhang Y and Cheng X 2018 Chem. Phys. 505 26
|
[48] |
Ataca C, Aktürk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
|
[49] |
Chandrakumar K R and Ghosh S K 2008 Nano Lett. 8 13
|
[50] |
Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924
|
[51] |
Rong J, Dong H, Feng J, Wang X, Zhang Y, Yu X and Zhan Z 2018 Carbon 135 21
|
[52] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[53] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[54] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[55] |
MacDonald A H 1978 Phys. Rev. B 18 5897
|
[56] |
Choi S M and Jhi S H 2009 Appl. Phys. Lett. 94 153108
|
[57] |
Antipina L Y, Avramov P V, Sakai S, Naramoto H, Ohtomo M, Entani S, Matsumoto Y and Sorokin P B 2012 Phys. Rev. B 86 085435
|
[58] |
Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M and Wu X 2017 Appl. Surf. Sci. 399 463
|
[59] |
Mayo S L, Olafson B D and Goddard I I I W A 1990 J. Phys. Chem. 94 8897
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|