Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077801    DOI: 10.1088/1674-1056/ab99b4

A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys

Songül Taran1, Ali Kemal Garip2, Haydar Arslan2
1 Department of Physics, Duzce University, Duzce 81620, Turkey;
2 Department of Physics, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
Abstract  In this study, truncated octahedron (TO) structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys. The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are obtained at Gupta level. The structures with the lowest energy at Gupta level are then re-optimized by density functional theory (DFT) relaxations and DFT results confirm the Gupta level calculations with small shifts on bond lengths indicating TO structure is favorable for 38-atom of PdnAg32-nPt6 trimetallic nanoalloys. The DFT excess energy analysis shows that Pd8Ag24Pt6 composition has the lowest excess energy value in common with excess energy analysis at Gupta level. In Pd8Ag24Pt6 composition, eight Pd atoms are central sites of 8 (111) hexagonal facets of TO, 24 Ag atoms locate on surface, and 6 Pt atoms locate at the core of the structure. It is also obtained that all of the compositions except Pd18Ag14Pt6 and Pd20Ag12Pt6 exhibit a octahedral Pt core. Besides, it is observed that there is a clear tendency for Ag atoms to segregate to the surface and also Pt atoms prefer to locate at core due to order parameter (R) variations.
Keywords:  nanoalloys      chemical ordering      optimization      density functional theory (DFT)  
Received:  25 March 2020      Revised:  28 May 2020      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  36.40.-c (Atomic and molecular clusters)  
Corresponding Authors:  Songül Taran     E-mail:

Cite this article: 

Songül Taran, Ali Kemal Garip, Haydar Arslan A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys 2020 Chin. Phys. B 29 077801

[1] Kaiser J, Leppert L, Welz H, Polzer F, Wunder S, Wanderka N, Albrecht M, Lunkenbein T, Breu J, Kümmel S, Lu Y and Ballauff M 2012 Phys. Chem. Chem. Phys. 14 6487
[2] Rodrigues D D C, Nascimento A M, Duarte H A and Belchior J C 2008 Chem. Phys. 349 91
[3] Chen F and Johnston R L 2008 ACS Nano 2 165
[4] Darby S, Mortimer-Jones T V, Johnston R L and Roberts C 2002 J. Chem. Phys. 116 1536
[5] Davis J B A, Johnston R L, Rubinovich L and Polak M 2014 J. Chem. Phys. 141 224307
[6] Curley B C, Rossi G, Ferrando R and Johnston R L 2007 Eur. Phys. J. D 43 53
[7] Zhu B, Front A, Guesmi H, Creuze J, Legrand B and Mottet C 2017 Comput. Theor. Chem. 1107 49
[8] Demiroglu I, Li Z Y, Piccolo L and Johnston R L 2016 Catal. Sci. Technol. 6 6916
[9] Negreiros F R, Taherkhani F, Parsafar G, Caro A and Fortunelli A 2012 J. Chem. Phys. 137 194302
[10] Fan T E, Demiroglu I, Hussein H A, Liu T D and Johnston R L 2017 Phys. Chem. Chem. Phys. 19 27090
[11] Demiroglu I, Li Z Y, Piccolo L and Johnston R L 2017 Comput. Theor. Chem. 1107 142
[12] Ismail R 2012 Theoretical studies of free and supported nanoalloy clusters, Ph. D. Dissertation (The Universiry of Birmingham)
[13] Pacheco-Contreras R, Juárez-Sáchez J O, Dessens-Félix M, Aguilera-Granja F, Fortunelli A and Posada-Amarillas A 2018 Comput. Mater. Sci. 141 30
[14] Rapetti D and Ferrando R 2019 J. Alloys Compd. 779 582
[15] Michaelian K, Rendón N and Garzón I L 1999 Phys. Rev. B 60 2000
[16] Bailey M S, Wilson N T, Roberts C and Johnston R L 2003 Eur. Phys. J. D 25 41
[17] Roberts C, Johnston R L and T W N 2000 Theor. Chem. Acc. 104 123
[18] Doye J P K and Wales D J 1998 New J. Chem. 22 733
[19] Lathiotakis N N, Andriotis A N, Menon M and Connolly J 1996 J. Chem. Phys. 104 992
[20] Johnston R L, Paz-Borbón L O, Barcaro G and Fortunelli A 2008 J. Chem. Phys. 128 134517
[21] Cerbelaud M, Ferrando R, Barcaro G and Fortunelli A 2011 Phys. Chem. Chem. Phys. 13 10232
[22] Molayem M, Grigoryan V G and Springborg M 2011 J. Phys. Chem. C 115 22148
[23] Guerrero-Jordan J, Cabellos J L, Johnston R L and Posada-Amarillas A 2018 Eur. Phys. J. B 91 123
[24] Pittaway F, Paz-Borbón L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G and Fortunelli A 2009 J. Phys. Chem. C 113 9141
[25] Oderji H Y and Ding H 2011 Chem. Phys. 388 23
[26] Wu G H, Liu Q M and Wu X 2015 Chem. Phys. Lett. 620 92
[27] Wu G, Sun Y, Wu X, Chen R and Wang Y 2017 Chem. Phys. Lett. 686 103
[28] Die D, Zheng B X, Yue J Y, Guo J J and Du Q 2020 Physica E 117 113805
[29] Fu Y C, Die D, Chen L, Zhu B and Yin H L 2020 Mol. Phys. 118 1622051
[30] Cyrot-Lackmann F and Ducastelle F 1971 Phys. Rev. B 4 2406
[31] Rosato V, Guillope M and Legrand B 1989 Philos. Mag. A 59 321
[32] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[33] Garip A K 2019 Mol. Simul. 45 1004
[34] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111
[35] Wales D J and Scheraga A H 1999 Science 285 1368
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[38] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901
[39] Garip A K 2018 Int. J. Mod. Phys. C 29 1850084
[40] Du R B, Xu Y Q, Wu X and Liu T 2018 Struct. Chem. 30 637
[41] Ferrando R 2018 Front. Nanosci. 12 189
[42] Ferrando R 2015 J. Phys.: Condens. Matter 27 013003
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[5] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[6] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[7] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[8] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[9] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[10] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[11] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[12] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[13] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[14] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[15] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
No Suggested Reading articles found!