Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047102    DOI: 10.1088/1674-1056/abccb5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarization-resolved Raman spectra of α -PtO2

Zhanhong Lei(雷展宏)1, Weiliang Wang(王伟良)1,†, and Juncong She(佘峻聪)2
1 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Abstract  Using density functional theory, we investigate the vibrational properties and polarization-resolved Raman spectra of α -PtO2 and obtain the Raman tensor and angle-dependent Raman intensity of α -PtO2. It is found that the polar plot of A 1g mode in parallel polarization configuration is useful in identifying the orientation of the crystal. The Raman intensity of the Eg mode is about five times stronger than that of the A1g mode. The Raman intensity is about three times stronger when the wave vector of the incident light is in x or y direction than in z direction. Our work will help the material scientists to characterize the α -PtO2 and to identify its orientation by comparing the experimental spectra with our result.
Keywords:  Raman tensor      DFT      α -PtO2  
Received:  12 October 2020      Revised:  10 November 2020      Accepted manuscript online:  23 November 2020
PACS:  31.15.E-  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), the National Key R&D Program of China (Grant No. 2016YFA0202000), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018B030311045), the National Natural Science Foundation of China (Grant No. 11704419), and the Physical Research Platform (PRP) in School of Physics, SYSU.
Corresponding Authors:  Corresponding author. E-mail: wangwl2@mail.sysu.edu.cn   

Cite this article: 

Zhanhong Lei(雷展宏), Weiliang Wang(王伟良), and Juncong She(佘峻聪) Polarization-resolved Raman spectra of α -PtO2 2021 Chin. Phys. B 30 047102

1 Carothers W H and Adams R 1923 J. Am. Chem. Soc. 45 1071
2 Voorhees V and Adams R 1922 J. Am. Chem. Soc. 44 1397
3 Zakharchenko N I 2001 Russian J. Appl. Chem. 74 1686
4 Gong X Q, Raval R and Hu P 2004 Phys. Rev. Lett. 93 106104
5 Sabourault N et al. 2002 Org. Lett. 4 2117
6 Jin Z S et al. 2003 J. Mol. Catal a-Chem 191 61
7 Bingwa N A et al. 2020 Molecular Catalysis 492 110978
8 Diniz F B and Ueta R R 2004 Electrochim. Acta 49 4281
9 Jerkiewicz Get al. 2004 Electrochim. Acta 49 1451
10 Kaewmaraya T et al. 2013 Comput. Mater. Sci. 79 804
11 Blackstock J J, Stewart D R and Li Z 2005 Appl. Phys. A: Materials Science & Processing 80 1343
12 Chen Q, Li W and Yang Y 2019 Front. Phys. 14 53604
13 Seriani N et al. 2007 Phys. Rev. B 76 155421
14 Pedersen T M, Li W X and Hammer B 2006 Phys. Chem. Chem. Phys. 8 1566
15 Gao M R et al. 2012 Chemistry-A European Journal 18 8423
16 H. Neff S H, Hartmannsgruber E, Steinbeiss E, Michalke W, Steenbeck K and Schmidt H G 1996 J. Appl. Phys. 79 7672
17 Li W X et al. 2004 Phys. Rev. Lett. 93 146104
18 Ouyang G, Sun Q and Zhu W G 2008 J. Phys. Chem. B 112 5027
19 Yuan J Z M, Yu W et al 2015 Materials 8 5007
20 McBride J R 1991 J. Appl. Phys. 69 1596
21 Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
22 Perdew J P et al. 1992 Phys. Rev. B 46 6671
23 Adllan A A and Dal Corso A 2011 J. Phys.: Condens. Matter 23 425501
24 Togo A and Tanaka I 2015 Scripta Mater. 108 1
25 Massote D V P et al. 2016 Phys. Rev. B 94 195416
26 Ceriotti M, Pietrucci F and Bernasconi M 2006 Phys. Rev. B 73 104304
27 Deng Z X et al. 2019 Phys. Chem. Chem. Phys. 21 1059
28 Shegai T O and Haran G 2006 J. Phys. Chem. B 110 2459
29 Kranert C et al. 2016 Sci. Rep. 6 165208
30 Zheng W et al. 2015 Photon. Res. 3 38
31 Luo G F et al. 2011 J. Phys. Chem. C 115 24463
32 Liang L B and Meunier V 2014 Nanoscale 6 5394
33 Umari P, Pasquarello A and Dal Corso A 2001 Phys. Rev. B 63 094305
34 Saboori S et al. 2019 ACS Omega 4 10171
35 Jin M G et al. 2019 J. Phys. Chem. C 123 29337
36 Zhu Y Met al. 2020 J. Raman Spectrosc. 51 1324
37 Saboori S et al. 2020 Nanotechnology 31 405708
38 Jin M G et al. 2020 J. Phys. Chem. Lett. 11 4311
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[6] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[7] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[8] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[9] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[10] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[11] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[12] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[13] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[14] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!