CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Polarization-resolved Raman spectra of α -PtO2 |
Zhanhong Lei(雷展宏)1, Weiliang Wang(王伟良)1,†, and Juncong She(佘峻聪)2 |
1 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Using density functional theory, we investigate the vibrational properties and polarization-resolved Raman spectra of α -PtO2 and obtain the Raman tensor and angle-dependent Raman intensity of α -PtO2. It is found that the polar plot of A 1g mode in parallel polarization configuration is useful in identifying the orientation of the crystal. The Raman intensity of the Eg mode is about five times stronger than that of the A1g mode. The Raman intensity is about three times stronger when the wave vector of the incident light is in x or y direction than in z direction. Our work will help the material scientists to characterize the α -PtO2 and to identify its orientation by comparing the experimental spectra with our result.
|
Received: 12 October 2020
Revised: 10 November 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
31.15.E-
|
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), the National Key R&D Program of China (Grant No. 2016YFA0202000), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018B030311045), the National Natural Science Foundation of China (Grant No. 11704419), and the Physical Research Platform (PRP) in School of Physics, SYSU. |
Corresponding Authors:
†Corresponding author. E-mail: wangwl2@mail.sysu.edu.cn
|
Cite this article:
Zhanhong Lei(雷展宏), Weiliang Wang(王伟良), and Juncong She(佘峻聪) Polarization-resolved Raman spectra of α -PtO2 2021 Chin. Phys. B 30 047102
|
1 Carothers W H and Adams R 1923 J. Am. Chem. Soc. 45 1071 2 Voorhees V and Adams R 1922 J. Am. Chem. Soc. 44 1397 3 Zakharchenko N I 2001 Russian J. Appl. Chem. 74 1686 4 Gong X Q, Raval R and Hu P 2004 Phys. Rev. Lett. 93 106104 5 Sabourault N et al. 2002 Org. Lett. 4 2117 6 Jin Z S et al. 2003 J. Mol. Catal a-Chem 191 61 7 Bingwa N A et al. 2020 Molecular Catalysis 492 110978 8 Diniz F B and Ueta R R 2004 Electrochim. Acta 49 4281 9 Jerkiewicz Get al. 2004 Electrochim. Acta 49 1451 10 Kaewmaraya T et al. 2013 Comput. Mater. Sci. 79 804 11 Blackstock J J, Stewart D R and Li Z 2005 Appl. Phys. A: Materials Science & Processing 80 1343 12 Chen Q, Li W and Yang Y 2019 Front. Phys. 14 53604 13 Seriani N et al. 2007 Phys. Rev. B 76 155421 14 Pedersen T M, Li W X and Hammer B 2006 Phys. Chem. Chem. Phys. 8 1566 15 Gao M R et al. 2012 Chemistry-A European Journal 18 8423 16 H. Neff S H, Hartmannsgruber E, Steinbeiss E, Michalke W, Steenbeck K and Schmidt H G 1996 J. Appl. Phys. 79 7672 17 Li W X et al. 2004 Phys. Rev. Lett. 93 146104 18 Ouyang G, Sun Q and Zhu W G 2008 J. Phys. Chem. B 112 5027 19 Yuan J Z M, Yu W et al 2015 Materials 8 5007 20 McBride J R 1991 J. Appl. Phys. 69 1596 21 Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 22 Perdew J P et al. 1992 Phys. Rev. B 46 6671 23 Adllan A A and Dal Corso A 2011 J. Phys.: Condens. Matter 23 425501 24 Togo A and Tanaka I 2015 Scripta Mater. 108 1 25 Massote D V P et al. 2016 Phys. Rev. B 94 195416 26 Ceriotti M, Pietrucci F and Bernasconi M 2006 Phys. Rev. B 73 104304 27 Deng Z X et al. 2019 Phys. Chem. Chem. Phys. 21 1059 28 Shegai T O and Haran G 2006 J. Phys. Chem. B 110 2459 29 Kranert C et al. 2016 Sci. Rep. 6 165208 30 Zheng W et al. 2015 Photon. Res. 3 38 31 Luo G F et al. 2011 J. Phys. Chem. C 115 24463 32 Liang L B and Meunier V 2014 Nanoscale 6 5394 33 Umari P, Pasquarello A and Dal Corso A 2001 Phys. Rev. B 63 094305 34 Saboori S et al. 2019 ACS Omega 4 10171 35 Jin M G et al. 2019 J. Phys. Chem. C 123 29337 36 Zhu Y Met al. 2020 J. Raman Spectrosc. 51 1324 37 Saboori S et al. 2020 Nanotechnology 31 405708 38 Jin M G et al. 2020 J. Phys. Chem. Lett. 11 4311 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|