Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010504    DOI: 10.1088/1674-1056/25/1/010504
GENERAL Prev   Next  

Effects of abnormal excitation on the dynamics of spiral waves

Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱)
College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed.
Keywords:  cellular automaton      abnormal excitation      transmembrane potential      spiral wave  
Received:  29 June 2015      Revised:  14 August 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).
Corresponding Authors:  Min-Yi Deng     E-mail:  dengminyi@mailbox.gxnu.edu.cn

Cite this article: 

Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱) Effects of abnormal excitation on the dynamics of spiral waves 2016 Chin. Phys. B 25 010504

[1] Jakubith S, Rotermund H H, Engel W, Oertzen A V and Ertl G 1990 Phys. Rev. Lett. 65 3013
[2] Larionova Y, Egorov O, Cabrera-Granado E and Esteban-Martin A 2005 Phys. Rev. A 72 033825
[3] Ma J, Zhang A H, Tang J and Jin W Y 2010 J. Biol. Syst. 18 243
[4] Zhang L S, Gu W F, Hu G and Mi Y Y 2014 Chin. Phys. B 23 108902
[5] Petrov V, Ouyang Q and Swinney H L 1997 Nature 388 655
[6] Nejad T M, Lannaccone S, Rutherford W, lannaccone P M and Foster C D 2015 Biomech. Model. Mechanobiol. 14 107
[7] Liu G Q, Wu N J and Ying H P 2013 Commun. Nonlinear Sci. 18 2398
[8] Zhao Y H, Lou Q, Chen J X, Sun W G, Ma J and Ying H P 2013 Chaos 23 033141
[9] Zhang H, Chen J X, Li Y Q and Xu J R 2006 J. Chem. Phys. 125 204503
[10] Li W H, Li W X, Pan F and Tang G N 2014 Acta Phys. Sin. 63 208201 (in Chinese)
[11] Keldermann R H, Nash M P, Gelderblom H, Wang V Y and Panfilov A V 2010 Am. J. Physiol. Heart Circ. Physiol. 299 H134
[12] Xie F G, Qu Z L, Garfinkel A and Weiss J N 2001 Am. J. Physiol. Heart Circ. Physiol. 280 H535
[13] Weiss J N, Garfinkel A, Karagueuzian H S, Chen P S and Qu Z L 2010 Heart Rhythm 7 1891
[14] Nasha M P and Panfilov A V 2004 Prog. Biophys. Mol. Biol. 85 501
[15] Yan Q, Guan D L, Yang H and Yan H W 2012 A Concise Handbook of Electrocardiogram (Beijing: People's Medical Publishing House) (in Chinese)
[16] Gottlieb S S 1989 Am. Heart J. 118 1074
[17] January C T and Moscucci A 1992 Ann. NY Acad. Sci. 644 23
[18] Ye P, Grosu R, Smolka S A and Entcheva E 2008 Lect. Notes Comput. Sci. 5307 141
[19] Pol L C, Deyell M W, Frankel D S, Benhayon D, Squara F, Chik W, Kohari M, Deo R and Marchlinski F E 2014 Heart Rhythm 11 299
[20] Wei H M and Tang G N 2011 Acta Phys. Sin. 60 030501 (in Chinese)
[21] Antzelevitch C 2001 Cardiovasc. Res. 50 426
[22] Chen J X, Mao J W, Hu B B, Xu J R, He Y F, Li Y and Yuan X P 2009 Phys. Rev. E 79 066209
[23] Stein M, van Veen T A B, Hauer R N W, de Bakker J M T and van Rijen H V M 2011 PLoS ONE 6 1
[24] Otani N F 2002 Chaos 12 829
[25] Levy D, Garrison R J, Savage D D, Kannel W B and Castelli W P 1990 New Engl. J. Med. 322 1561
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[5] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Exploring the role of inhibitory coupling in duplex networks
Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英). Chin. Phys. B, 2017, 26(8): 088201.
[12] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[13] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[14] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[15] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
No Suggested Reading articles found!