Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070501    DOI: 10.1088/1674-1056/abf553
GENERAL Prev   Next  

Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle

Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰)
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Removal of spiral waves in cardiac muscle is necessary because of their threat to life. Common methods for this removal are to apply a local disturbance to the media, such as a periodic forcing. However, most of these methods accelerate the beating of the cardiac muscle, resulting in the aggravation of the ventricular tachycardia, which directly threatens life. In the present study, in order to clear off spiral waves, a global pulse-disturbance is applied to the media based on three models of cardiac muscle. It is found that the spiral waves are eliminated and the frequency of the cardiac muscle is decreased in a short time, and finally, the state of the medium reaches the normal oscillation, which supports a target waves. Our method sheds light on the removal of spiral waves in cardiac muscle and can prevent the ventricular tachycardia as well as the ventricular fibrillation.
Keywords:  ventricular fibrillation      spiral wave      pattern formation      elimination  
Received:  02 February 2021      Revised:  25 March 2021      Accepted manuscript online:  07 April 2021
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  47.54.-r (Pattern selection; pattern formation)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042 and 11505114), and the Shanghai project for construction of top disciplines (Grant No. USST-SYS01).
Corresponding Authors:  Changgui Gu     E-mail:  gu_changgui@163.com

Cite this article: 

Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰) Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle 2021 Chin. Phys. B 30 070501

[1] Zipes D P, Heger J J and Prystowsky E N 1998 Circulation 98 2334
[2] Xie Y, Grandi E and Bers D M 2014 Europace 16 452
[3] Harada M, Honjo H and Yamazaki M 2008 Am. J. Physiol.: Heart Circ. Physiol. 294 H1896
[4] Winfree A T 1998 Chaos 8 1
[5] Witkowski F X, Leon L J and Penkoske P A 1998 Nature 392 78
[6] Lee J J, Kamjoo K and Hough D 1996 Circ. Res. 78 660
[7] Garfinkel A, Kim Y H and Voroshilovsky O 2000 Proc. Natl. Acad. Sci. USA 97 6061
[8] Cysyk J and Tung L 2008 Biophys. J. 94 1533
[9] Shiferaw Y, Qu Z and Garfinkel A 2010 Ann. NY Acad. Sci. 1080 376
[10] Karma A 1994 Chaos 4 461
[11] Steinbock O, Schütze J and Muller S C 1992 Phys. Rev. Lett. 68 248
[12] Hu G, Xiao J and Chua L O 1998 Phys. Rev. Lett. 80 1884
[13] Xiao J, Hu G, Yang J and Gao J 1998 Phys. Rev. Lett. 81 5314
[14] Sinha S, Pande A and Pandit R 2001 Phys. Rev. Lett. 86 3678
[15] Kim M, Bertram M and Pollmann M 2001 Science 292 1357
[16] Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L and Winfree A T 1998 Nature 392 78
[17] Weise L and Panfilov A 2017 Phys. Rev. Lett. 119 108101
[18] Lown B 2001 ACC Curr. J. Rev. 10 69
[19] Gao X and Zhang H 2014 Phys. Rev. E 89 062928
[20] Wang C N, Ma J and Liu Y, Chaos control 2012 Nonlinear Dyn. 67 139
[21] Ma J, Jia Y and Yi M 2009 Chaos Soliton Fract. 41 1331
[22] Wu F, Wang C, Xu Y and Ma J 2016 Sci. Rep. 6 28
[23] Ma J, Wu F and Hayat T 2017 Physica A 486 508
[24] Zhang Q L, Ling L and Zhang Y 2011 Chin. Phys. B 20 090514
[25] Pan D, Gao X and Feng X 2016 Sci. Rep. 6 21876
[26] Chen J X, Guo M M and Ma J 2016 Europhys. Lett. 113 38004
[27] Chen J X, Peng L and Ma J 2014 Europhys. Lett. 107 38001
[28] Chen J X, Peng L and Zheng Q, Zhao Y H and Ying H P 2014 Chaos 24 033103
[29] Aranson I, Levine H and Tsimring L 1994 Phys. Rev. Lett. 72 2561
[30] Zhang H, Hu B, Hu G, Ouyang Q and Kurths J 2002 Phys. Rev. E 66 046303
[31] Jiang M, Wang X and Ouyang Q 2004 Phys. Rev. E 69 056202
[32] Lee J K 1997 Phys. Rev. Lett. 79 2907
[33] Fu Y, Zhang H and Cao Z 2005 Phys. Rev. E 72 046206
[34] Liu F C, Wang X F, Li X C and Dong L F 2007 Chin. Phys. 16 2640
[35] Cui X, Huang X and Hu G 2015 Sci. Rep. 6 34591
[36] Cui X, Huang X and Di Z 2015 Europhys. Lett. 112 54003
[37] Cherry E M and Fenton F H 2008 New J. Phys. 10 125016
[38] Gray R A, Wikswo P J and Otani F N 2009 Chaos 19 033118
[39] Bär M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[40] Aranson I and Kramer L 2001 Rev. Mod. Phys. 74 99
[41] Zhang S, Bambi H and Zhang H 2003 Phys. Rev. E 67 016214
[42] Cai M C, Pan J T and Zhang H 2014 Phys. Rev. E 89 022920
[43] Liu G Q and Ying H P 2014 Chin. Phys. B 23 050502
[44] Chen J X, Xiao J, Qiao L Y and Xu J R 2018 Commun. Nonlinear Sci. Numer. Simulat. 59 331
  • 1. Supplementary files.pdf(712KB)
  • 2. Movie 1.mp4(3663KB)

  • 3. Movie 2.mp4(1892KB)

  • 4. Movie 3.mp4(3122KB)

  • 5. Movie 4.mp4(2451KB)

  • 6. Movie S1.mp4(2894KB)

  • 7. Movie S2.mp4(1712KB)

  • 8. Movie S3.mp4(3031KB)

  • 9. Movie S4.mp4(918KB)

[1] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[2] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[3] Exploring the role of inhibitory coupling in duplex networks
Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英). Chin. Phys. B, 2017, 26(8): 088201.
[4] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[5] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[6] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[7] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[8] Crosstalk elimination in multi-view autostereoscopic display based on polarized lenticular lens array
Wang Zhi-Yuan (王志远), Hou Chun-Ping (侯春萍). Chin. Phys. B, 2015, 24(1): 014213.
[9] Motion of spiral tip driven by local forcing in excitable media
Liu Gui-Quan (刘贵泉), Ying He-Ping (应和平). Chin. Phys. B, 2014, 23(5): 050502.
[10] The effect of cellular aging on the dynamics of spiral waves
Deng Min-Yi (邓敏艺), Chen Xi-Qiong (陈茜琼), Tang Guo-Ning (唐国宁). Chin. Phys. B, 2014, 23(12): 120503.
[11] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[12] The influence of long-range links on spiral waves and its application for control
Qian Yu (钱郁). Chin. Phys. B, 2012, 21(8): 088201.
[13] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[14] Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) . Chin. Phys. B, 2011, 20(9): 090514.
[15] Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave
Yuan Guo-Yong(袁国勇) . Chin. Phys. B, 2011, 20(4): 040503.
No Suggested Reading articles found!