Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088201    DOI: 10.1088/1674-1056/26/8/088201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Exploring the role of inhibitory coupling in duplex networks

Cui-Yun Yang(杨翠云)1,2, Guo-Ning Tang(唐国宁)1, Hai-Ying Liu(刘海英)2
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 Department of Physics and Engineering Technology, Guilin Normal College, Guilin 541001, China
Abstract  

The electrical coupling of myocytes and fibroblasts can play a role in inhibiting electrical impluse propagation in cardiac muscle. To understand the function of fibroblast-myocyte coupling in the aging heart, the spiral-wave dynamics in the duplex networks with inhibitory coupling is numerically investigated by the Bär-Eiswirth model. The numerical results show that the inhibitory coupling can change the wave amplitude, excited phase duration and excitability of the system. When the related parameters are properly chosen, the inhibitory coupling can induce local abnormal oscillation in the system and the Eckhaus instability of the spiral wave. For the dense inhibitory network, the maximal decrement (maximal increment) in the excited phase duration can reach 24.3%(13.4%), whereas the maximal decrement in wave amplitude approaches 28.1%. Upon increasing the inhibitory coupling strength, the system excitability is reduced and even completely suppressed when the interval between grid points in the inhibitory network is small enough. Moreover, the inhibitory coupling can lead to richer phase transition scenarios of the system, such as the transition from a stable spiral wave to turbulence and the transition from a meandering spiral wave to a planar wave. In addition, the self-sustaining planar wave, the unique meandering of spiral wave and inward spiral wave are observed. The physical mechanisms behind the phenomena are analyzed.

Keywords:  excitable system      spiral wave      inhibitory coupling      duplex networks  
Received:  18 February 2017      Revised:  27 April 2017      Accepted manuscript online: 
PACS:  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005 and 11365003).

Corresponding Authors:  Guo-Ning Tang     E-mail:  tangguoning@mailbox.gxnu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英) Exploring the role of inhibitory coupling in duplex networks 2017 Chin. Phys. B 26 088201

[1] Maini P K, Painter K J and Chau H N P 1997 J. Chem. Soc., Faraday Trans. 93 3601
[2] Meron E 1992 Phys. Rep. 218 1
[3] Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79
[4] Kondo S and Miura T 2010 Science 329 1616
[5] Larionova Y, Egorov O, Cabrera-Granado E and Esteban-Martin A 2005 Phys. Rev. A 72 033825
[6] Plapp B B, Egolf D A, Bodenschatz E and Pesch W 1998 Phys. Rev. Lett. 81 5334
[7] Müller S C, Plesser T and Hess B 1985 Science 230 661
[8] Vanag V K and Epstein I R 2001 Science 294 835
[9] Davidenko J M, Pertsov A V, Salomonsz, Baxter W and Jalife J 1992 Nature 355 349
[10] Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T and Jalife J 1993 Circ. Res. 72 631
[11] Foerster P, Müller S C and Hess B 1990 Development 109 11
[12] Huang X, Xu W, Liang J, Takagaki K, Gao X and Wu J 2010 Neuron 68 978
[13] Chen J X, Guo M M and Ma J 2016 Europhys. Lett. 113 38004
[14] Chen J X, Peng L, Ma J and Ying H P 2014 Europhys. Lett. 107 38001
[15] Pan F, Wang X Y, Wang P, Li W X and Tang G N 2016 Acta Phys. Sin. 65 198201 (in Chinese)
[16] Qiu K, Tang J, Luo J M and Ma J 2013 Chin. Phys. Lett. 30 118701
[17] Qian Y 2012 Chin. Phys. B 21 088201
[18] Camelliti P, Borg T K and Kohl P 2005 Cardiovasc. Res. 65 40
[19] Camelliti P, Green C P and Kohl P 2006 Adv. Cardiol. Basel, Karger 42 132
[20] Kohl P, Camelliti P, Burton F L and Smith G L 2005 J. Electrocardiol. 38 45
[21] Gaudesius G, Miragoli M, Thomas S P and Rohr S 2003 Circ. Res. 93 421
[22] Nguyen T P, Xie Y, Garfinkel A, Qu Z and Weiss J N 2012 Cardiovasc. Res. 93 242
[23] Bär M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[24] Maleckar M M, Greenstein J L, Giles W R and Trayanova N A 2009 Biophysical J. 97 2179
[1] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[2] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[3] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[4] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[5] Motion of spiral tip driven by local forcing in excitable media
Liu Gui-Quan (刘贵泉), Ying He-Ping (应和平). Chin. Phys. B, 2014, 23(5): 050502.
[6] The effect of cellular aging on the dynamics of spiral waves
Deng Min-Yi (邓敏艺), Chen Xi-Qiong (陈茜琼), Tang Guo-Ning (唐国宁). Chin. Phys. B, 2014, 23(12): 120503.
[7] The influence of long-range links on spiral waves and its application for control
Qian Yu (钱郁). Chin. Phys. B, 2012, 21(8): 088201.
[8] Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) . Chin. Phys. B, 2011, 20(9): 090514.
[9] Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave
Yuan Guo-Yong(袁国勇) . Chin. Phys. B, 2011, 20(4): 040503.
[10] Taming desynchronized bursting with delays in the Macaque cortical network
Wang Qing-Yun(王青云), Murks Aleksandra, Perc Matjavž, and Lu Qi-Shao(陆启韶) . Chin. Phys. B, 2011, 20(4): 040504.
[11] Synchronizing spiral waves in a coupled Rössler system
Gao Jia-Zhen(高加振), Yang Shu-Xin(杨舒心), Xie Ling-Ling(谢玲玲), and Gao Ji-Hua(高继华) . Chin. Phys. B, 2011, 20(3): 030505.
[12] Lattice Boltzmann simulation for the energy and entropy of excitable systems
Deng Min-Yi(邓敏艺), Tang Guo-Ning(唐国宁), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁) . Chin. Phys. B, 2011, 20(2): 020510.
[13] Size transition of spiral waves using the pulse array method
Xie Ling-Ling(谢玲玲) and Gao Ji-Hua(高继华). Chin. Phys. B, 2010, 19(6): 060516.
[14] Doppler instability of antispiral waves in discrete oscillatory reaction-diffusion media
Qian Yu(钱郁), Huang Xiao-Dong(黄晓东), Liao Xu-Hong(廖旭红), and Hu Gang(胡岗). Chin. Phys. B, 2010, 19(5): 050513.
[15] Distributed predictive control of spiral wave in cardiac excitable media
Gan Zheng-Ning(甘正宁) and Cheng Xin-Ming(成新明). Chin. Phys. B, 2010, 19(5): 050514.
No Suggested Reading articles found!