Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 125201    DOI: 10.1088/1674-1056/24/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

H. Kakatia, S. M. Borahb
a Jorhat Institute of Science and Technology, Jorhat 10, Assam, India;
b Department of Applied Sciences, Gauhati University, Jalukbari, Guwahati-781014, Assam, India
Abstract  In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained.
Keywords:  cylindrical magnetron      sputtering      reactive mode      hysteresis  
Received:  25 June 2015      Revised:  13 August 2015      Accepted manuscript online: 
PACS:  52.20.-j (Elementary processes in plasmas)  
  51.60.+a (Magnetic properties)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.55.-s (Magnetic confinement and equilibrium)  
Fund: Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.
Corresponding Authors:  S. M. Borah     E-mail:  sankarmoni@gmail.com

Cite this article: 

H. Kakati, S. M. Borah Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma 2015 Chin. Phys. B 24 125201

[1] Mednikarov B, Spasov G and Babeva T 2005 J. Optoelectron. Adv. Mater. 7 1421
[2] Bielawski M 2006 Surf. Coat. Technol. 200 3987
[3] Sarakinos K, Alami J, Karimi P M, Severin D and Wuttig M 2007 J. Phys. D: Appl. Phys. 40 778
[4] Jayaraj M K, Antony A and Ramachandran M 2002 Bull. Mater. Sci. 25 227
[5] Schmidt N W, Totushek T S, Kimes W A, Callender D R and Doyle J R 2003 J. Appl. Phys. 94 5514
[6] Wohlmuth W and Adesida I 2005 Thin Solid Films 479 223
[7] Reddy Y K V, Mergel D, Reuter S, Buck V and Sulkowski M 2006 J. Phys. D: Appl. Phys. 39 1161
[8] Tomozeiu N 2006 J. Optoelectron. Adv. Mater. 8 769
[9] Kakati H, Pal A R, Bailung H and Chutia J 2007 J. Appl. Phys. 101 083304
[10] Kakati H, Pal A R, Bailung H and Chutia J 2009 Appl. Surf. Sci. 255 7403
[11] Arnell R D, Colligon J S, Minnebaev K F and Yurasova V E 1996 Vacuum 47 425
[12] Diesselberg M, Stock H R and Mayr P 2004 Surf. Coat. Technol. 177 399
[13] Borah S M, Pal A R, Bailung H and Chutia J 2008 Appl. Surf. Sci. 254 5760
[14] Gardner R A, Peterson P J and Kennedy T N 1997 J. Vac. Sci. Technol. 14 1139
[15] Nowicki R S 1997 J. Vac. Sci. Technol. 14 127
[16] Pratt I H 1969 Thin Solid Films 3 R23
[17] Deshpandey C, Holland L 1982 Thin Solid Films 96 265
[18] Goranchev B, Orlinov V, Tsaneva V and Petrov I 1978 Thin Solid Films 52 365
[19] Thornton J A and Lamb J L 1981 Thin Solid Films 83 377
[20] Bhatia C S, Guthmiller G and Spool A M 1989 J. Vac. Sci. Technol. A 7 1298
[21] Roth T, Kloos K H and Broszeit E 1987 Thin Solid Films 153 123
[22] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[23] Edgar J H 1992 J. Mater. Res. 7 235
[24] Berg S and Nyberg T 2005 Thin Solid Films 476 215
[25] Borah S M, Bailung H, Pal A R and Chutia J 2008 J. Phys. D: Appl. Phys. 41 195205
[26] Borah S M, Bailung H and Chutia J 2010 Prog. Color Colorants Coat. 3 74
[27] Borah S M, Pal A R, Bailung H and Chutia J 2011 Chin. Phys. B 20 014701
[28] Borah S M 2013 J. Mater. 2013 852859
[29] Borah S M 2014 J. Phys. Sci. Appl. 4 440
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[5] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[6] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[7] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[8] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[9] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[10] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[13] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[14] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[15] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
No Suggested Reading articles found!