Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 124207    DOI: 10.1088/1674-1056/24/12/124207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

Lü Hai-Yan (吕海燕)a, Mu Qi (牟奇)a, Zhang Lei (张磊)a, Lü Yuan-Jie (吕元杰)b, Ji Zi-Wu (冀子武)a, Feng Zhi-Hong (冯志红)b, Xu Xian-Gang (徐现刚)c, Guo Qi-Xin (郭其新)d
a School of Physics, Shandong University, Jinan 250100, China;
b National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
c Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan 250100, China;
d Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga 840-8502, Japan
Abstract  Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal.
Keywords:  photoluminescence      ZnTe bulk crystal      ZnTe epilayer      defect or impurity-related emissions  
Received:  22 May 2015      Revised:  07 July 2015      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
  61.50.-f (Structure of bulk crystals)  
  68.55.-a (Thin film structure and morphology)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Corresponding Authors:  Ji Zi-Wu, Guo Qi-Xin     E-mail:  jiziwu@sdu.edu.cn;guoq@cc.saga-u.ac.jp

Cite this article: 

Lü Hai-Yan (吕海燕), Mu Qi (牟奇), Zhang Lei (张磊), Lü Yuan-Jie (吕元杰), Ji Zi-Wu (冀子武), Feng Zhi-Hong (冯志红), Xu Xian-Gang (徐现刚), Guo Qi-Xin (郭其新) Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE 2015 Chin. Phys. B 24 124207

[1] Garica A, Remon A, Munoz V and Triboulet R 1998 J. Crystal Growth 191 685
[2] Wu S, Shen W Z, Ogawa H and Guo Q X 2003 Chin. Phys. 12 1026
[3] Shao J 2003 Acta Phys. Sin. 52 1743 (in Chinese)
[4] He L R, Gu C M, Shen W Z, Cao J C, Qgawa H and Guo Q X 2005 Acta Phys. Sin. 54 4938 (in Chinese)
[5] Guo Q X, Sueyasu Y, Ding Y L, Tanaka T and Nishio M 2009 J. Crystal Growth 311 970
[6] Naumov A, Wolf K, Reisinger T, Stanzl H and Gebhardt W 1988 J. Appl. Phys. 64 3210
[7] Wolf K, Naumov A, Reisinger T, Kastner M, Stanzl H, Kuhn W and Gebhardt W 1994 J. Crystal Growth 135 113
[8] Jang M S, Oh S H, Lee K H, Bahng J H, Choi J C, Jeong K H, Park H L, Choo D C, Lee D U and Kim T W 2003 J. Phys. Chem. Sol. 64 357
[9] Longo M, Lovergine N, Mancini A M, Leo G and Berti M 1998 J. Vac. Sci. Technol. B 16 2650
[10] Zozime A, Seibt M, Ertel J, Tromson-Carli A, Druilhe R, Grattepain C and Triboulet R 2003 J. Crystal Growth 249 15
[11] Kuhn W S, Lusson A, Quõ Hen B, Grattepain C, Dumont H, Gorochov O, Bauer S, Wolf K, Worz M, Reisinger T, Rosenauer A, Wagner H P, Stanzl H P and Gebhardt W 1995 Prog. Crystal Growth Charact. Mater. 31 119
[12] Shigaura G, Ohashi M, Ichinohe Y, Kanamori M, Kimura Na, Kimura No, Sawada T, Suzuki K and Imai K 2007 J. Crystal Growth 301-302 297
[13] Kume Y, Guo Q X, Fukuhara Y, Tanaka T, Nishio M and Ogawa H 2007 J. Crystal Growth 298 445
[14] Tanaka T, Hayashida K, Wang S, Guo Q X, Nishio M and Ogawa H 2003 Nucl. Instrum. Method Phys. Res. B 199 356
[15] Dean P J, Venghaus H, Pfister J C, Schaub B and Marine J 1978 J. Luminescence 16 363
[16] Naumov A, Wolf K, Reisinger T, Stanzl H, Wagne H P and Gebhardt W 1993 Physica B 185 250
[17] Naumov A, Wolf K, Reisinger T, Stanzl H and Gebhardt W 1993 J. Appl. Phys. 73 2581
[18] Ekawa M and Taguchi T 1989 Jpn. J. Appl. Phys. 28 L1341
[19] Zhang Y, Skromme B J and Turco-Sandroff F S 1992 Phys. Rev. B 46 3872
[20] Yoshino K, Yoneta M, Ohmori K, Saito H, Ohishi M and Yabe T 2004 J. Electron. Mater. 33 579
[21] Tu R C, Su Y K, Chen H J, Huang Y S, Chou S T, Lan W H and Tu S T 1998 J. Appl. Phys. 84 2866
[22] Ekawa M and Taguchi T 1989 Jpn. J. Appl. Phys. 28 L1341
[23] Zhang L, Ji Z W, Huang S L, Wang H N, Xiao H D, Zheng Y J, Xu X G, Lu Y and Guo Q X 2013 Thin Solid Films 536 240
[24] Huang S L, Ji Z W, Zhao M W, Zhang L, Guo H Y, Liu B L, Xu X G and Guo Q X 2012 Phys. Status Solidi A 209 2041
[25] Tanaka T, Hayashida K, Wang S L, Guo Q X, Nishio M and Ogawa H 2003 J. Crystal Growth 248 43
[26] Nishio M, Guo Q X and Ogawa H 1999 Thin Solid Films 343-344 512
[27] Traversa M, Lovergine N, Prete P, Yoshino K and Di Luccio T 2004 J. Appl. Phys. 96 1230
[28] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[29] Ursaki V V, Tiginyanu I M, Zalamai V V, Hubbard S M and Pavlidis D 2003 J. Appl. Phys. 94 4813
[30] Chen G D, Smith M, Lin J Y, Jiang H X, Salvador A, Sverdlov B N, Botchkarv A and Morkoc H 1996 J. Appl. Phys. 79 2675
[31] Varshni Y P 1967 Physica 34 149
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!