Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118501    DOI: 10.1088/1674-1056/24/11/118501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Excellent ethanol sensing properties based on Er2O3-Fe2O3 nanotubes

Liu Chang-Bai (刘唱白)a, He Ying (何滢)b, Wang Sheng-Lei (王圣蕾)a
a College of Electronic Science & Engineering, Jilin University, Changchun 130012, China;
b College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130012, China
Abstract  

In this work, pure α-Fe2O3 and Er2O3-Fe2O3 nanotubes were synthesized by a simple single-capillary electrospinning technology followed by calcination treatment. The morphologies and crystal structures of the as-prepared samples were characterized by scanning electron microscopy and x-ray diffraction, respectively. The gas-sensing properties of the as-prepared samples have been researched, and the result shows that the Er2O3-Fe2O3 nanotubes exhibit much better sensitivity to ethanol. The response value of Er2O3-Fe2O3 nanotubes to 10 ppm ethanol is 21 at the operating temperature 240°, which is 14 times larger than that of pure α-Fe2O3 nanotubes (response value is 1.5). The ethanol sensing properties of α-Fe2O3 nanotubes are remarkably enhanced by doping Er, and the lowest detection limit of Er2O3-Fe2O3 nanotubes is 300 ppb, to which the response value is about 2. The response and recovery times are about 4 s and 70 s to 10 ppm ethanol, respectively. In addition, the Er2O3-Fe2O3 nanotubes possess good selectivity and long-term stability.

Keywords:  Er2O3      α-Fe2O3 nanotubes      ethanol      gas sensing  
Received:  09 April 2015      Revised:  19 June 2015      Accepted manuscript online: 
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  85.35.-p (Nanoelectronic devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by Jilin Provincial Science and Technology Department, China (Grant No. 20140204027GX) and the Challenge Cup for College Students, China (Grant No. 450060497053).

Corresponding Authors:  Liu Chang-Bai     E-mail:  liwei99@jlu.edu.cn

Cite this article: 

Liu Chang-Bai (刘唱白), He Ying (何滢), Wang Sheng-Lei (王圣蕾) Excellent ethanol sensing properties based on Er2O3-Fe2O3 nanotubes 2015 Chin. Phys. B 24 118501

[1] Brandt A and Balducci A;2013 J. Power Spurces 230 44
[2] Xiao Y, Hu C and Cao M;2014 J. Power Spurces 247 49
[3] Kar P, Banerjee T, Verma S, Sen A, Das A, Ganguly B and Ghosh H N;2012 Phys. Chem. Chem. Phys. 14 8192
[4] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J and Aydil E S;2007 Nano Lett. 7 1793
[5] Katoch A, Byun J H, Choi S W and Kim S S;2014 Sens. Actuators B 202 38
[6] Zeng P, Zhang P, Hu M, Ma S Y and Yan W J;2014 Chin. Phys. B 23 058103
[7] Qin Y X, Liu C Y and Liu Y;2015 Chin. Phys. B 24 027304
[8] Jabeen M, Iqbal M A, Kumar R V, Ahmed M and Javed M T;2014 Chin. Phys. B 23 018504
[9] Michel C R and Martínez-Preciado A H;2015 Sens. Actuators B 208 355
[10] Zeng W, Li T, Li T, Hao J and Li Y;2015 J. Mater. Sci.-Mater. Electron. 26 1192
[11] Zhang Y, Liu T, Zhang H, Zeng W, Pan F and Peng X;2014 J. Mater. Sci.-Mater. Electron. 26 191
[12] Sun G, Qi F, Zhang S, Li Y, Wang Y, Cao J, Bala H, Wang X, Jia T and Zhang Z;2014 J. Alloy. Compd. 617 192
[13] Song P, Han D, Zhang H, Li J, Yang Z and Wang Q;2014 Sens. Actuators B 196 434
[14] Liang S, Zhu J, Wang C, Yu S, Bi H, Liu X and Wang X;2014 Appl. Sur. Sci. 292 278
[15] Zhao C, Huang B, Xie E, Zhou J and Zhang Z;2015 Sens. Actuators B 207 313
[16] Jiang Z, Jiang T, Wang J, Wang Z, Xu X, Wang Z, Zhao R, Li Z and Wang C;2015 J. Colloid. Interface. Sci. 437 252
[17] Sun X, Ji H, Li X, Cai S and Zheng C;2014 J. Alloy. Compd. 600 111
[18] Fan H, Zhang T, Xu X and Lü N;2011 Sens. Actuators B 153 83
[19] Peeters D, Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C and Sberveglieri G;2014 J.Phys. Chem. C 118 11813
[20] Zhao C, Hu W, Zhang Z, Zhou J, Pan X and Xie E;2014 Sens. Actuators B 195 486
[21] Liu C, Chi X, Liu X and Wang S;2014 J. Alloy. Compd. 616 208
[22] Du N, Zhang H, Chen B D, Ma X Y, Liu Z H, Wu J B and Yang D R;2007 Adv. Mater. 19 1641
[23] Sun P, Wang C, Zhou X, Cheng P, Shimanoe K, Lu G and Yamazoe N;2014 Sens. Actuators B 193 616
[24] Gunawan P, Mei L, Teo J, Ma J, Highfield J, Li Q and Zhong Z;2012 Langmuir 28 14090
[25] Xu L, Dong B, Wang Y, Bai X, Chen J, Liu Q and Song H;2010 J. Phys. Chem. C 114 9089
[26] Aono H, Traversa E, Sakamoto M and Sadaoka Y;2003 Sens. Actuators B 94 132
[27] Wang C, Ma S, Sun A, Qin R, Yang F, Li X, Li F and Yang X;2014 Sens. Actuators B 193 326
[28] Rajgure A V, Tarwal N L, Patil J Y, Chikhale L P, Pawar R C, Lee C S, Mulla I S and Suryavanshi S S;2014 Ceram. Int. 40 5837
[29] Su C, Liu C, Liu L, Ni M, Li H, Bo X, Liu L and Chi X;2014 Appl. Surf. Sci. 314 931
[30] Li W, Ma S, Yang G, Mao Y, Luo J, Cheng L, Gengzang D, Xu X and Yan S;2015 Mater. Lett. 138 188
[31] Zhang T, Gu F, Han D, Wang Z and Guo G;2013 Sens. Actuators B 177 1180
[32] Zhang X H, Chen J, Wu Y, Xie Z, Kang J and Zheng L;2011 Colloid. Surface. A 384 580
[33] Liu L, Liu C, Li S, Wang L, Shan H, Zhang X, Guan H and Liu Z;2013 Sens. Actuators B 177 893
[34] Mao Y, Ma S, Li X, Wang C, Li F, Yang X, Zhu J and Ma L;2014 Appl. Surf. Sci. 298 109
[35] Hjiri M, El Mir L, Leonardi S G, Pistone A, Mavilia L and Neri G;2014 Sens. Actuators B 196 413
[36] Zhao C, Zhang G, Han W, Fu J, He Y, Zhang Z and Xie E;2013 Cryst. Eng. Commun. 15 6491
[37] Wang B B, Fu X X, Liu F, Shi S L, Cheng J P and Zhang X B;2014 J. Alloy. Compd. 587 82
[38] Navale S T, Bandgar D K, Nalage S R, Khuspe G D, Chougule M A, Kolekar Y D, Sen S and Patil V B;2013 Ceram. Int. 39 6453
[39] Zheng W, Li Z, Zhang H, Wang W, Wang Y and Wang C;2009 Mater. Res. Bull. 44 1432
[40] Lou Z, Li F, Deng J, Wang L and Zhang T;2013 ACS Appl. Mater. Inter. 5 12310
[41] Li X B, Ma S Y, Li F M, Chen Y, Zhang Q Q, Yang X H, Wang C Y and Zhu J;2013 Mater. Lett. 100 119
[42] Ma J, Teo J, Mei L, Zhong Z, Li Q, Wang T, Duan X, Lian J and Zheng W;2012 J. Mater. Chem. 22 11694
[43] Li W Q, Ma S Y, Li Y F, Li X B, Wang C Y, Yang X H, Cheng L, Mao Y Z, Luo J, Gengzang D J, Wan G X and Xu X L;2014 J. Alloy. Compd. 605 80
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[3] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[4] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[5] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[6] Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments
Wenjun Yan(闫文君), Xiaomin Zeng(曾小敏), Huan Liu(刘欢), Chunwei Guo(郭春伟), Min Ling(凌敏), Houpan Zhou(周后盘). Chin. Phys. B, 2019, 28(10): 106801.
[7] Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells
Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫). Chin. Phys. B, 2016, 25(8): 088801.
[8] Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure
Deng-Feng Wang(王登峰), Ji-Ran Liang(梁继然), Chang-Qing Li(李昌青), Wen-Jun Yan(闫文君), Ming Hu(胡明). Chin. Phys. B, 2016, 25(2): 028102.
[9] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun (肖红君), Shen Cheng-Min (申承民), Shi Xue-Zhao (时雪钊), Yang Su-Dong (杨苏东), Tian Yuan (田园), Lin Shao-Xiong (林少雄), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078109.
[10] Synthesis and room-temperature NO2 gas sensing properties of a WO3 nanowires/porous silicon hybrid structure
Zeng Peng (曾鹏), Zhang Ping (张平), Hu Ming (胡明), Ma Shuang-Yun (马双云), Yan Wen-Jun (闫文君). Chin. Phys. B, 2014, 23(5): 058103.
[11] Amorphous Er2O3 films for antireflection coatings
Zhu Yan-Yan(朱燕艳), Fang Ze-Bo(方泽波), and Liu Yong-Sheng(刘永生). Chin. Phys. B, 2010, 19(9): 097807.
[12] Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation
Ding Hao(丁皓), Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Wang Deng-Ke(王登科), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(10): 106104.
[13] Highly sensitive room-temperature gas sensors based on hydrothermal synthesis of Cr2O3 hollow nanospheres
Li Sheng(李盛), Li Feng-Li(李凤丽), Zhou Shao-Min(周少敏), Wang Peng(王鹏), Cheng Ke(程轲), and Du Zu-Liang(杜祖亮). Chin. Phys. B, 2009, 18(9): 3985-3989.
[14] Annealing effects on the structure and electrical characteristics of amorphous Er2O3 films
Fang Ze-Bo(方泽波), Zhu Yan-Yan(朱燕艳), Wang Jia-Le(王佳乐), and Jiang Zui-Min(蒋最敏). Chin. Phys. B, 2009, 18(8): 3542-3546.
[15] Fluorescence spectrum characteristic of ethanol--water excimer and mechanism of resonance energy transfer
Liu Ying(刘莹), Song Chun-Yuan(宋春元), Luo Xiao-Sen(骆晓森), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2007, 16(5): 1300-1306.
No Suggested Reading articles found!