Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118701    DOI: 10.1088/1674-1056/24/11/118701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments

Jiang Yang-Wei (蒋杨伟)a, Ran Shi-Yong (冉诗勇)b, He Lin-Li (何林李)b, Wang Xiang-Hong (王向红)b c, Zhang Lin-Xi (章林溪)a
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Department of Physics, Wenzhou University, Wenzhou 325035, China;
c Department of Electrical and Electronic Engineering, Wenzhou Vocational and Technical College, Wenzhou 325035, China
Abstract  Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transitions of DNA are also experimentally observed in mixing spermidine with λ-phage DNA at different concentrations of NaCl/MgCl2 solutions.
Keywords:  DNA decondensation      salt concentration      multivalent cations      molecular dynamics simulation  
Received:  15 March 2015      Revised:  05 June 2015      Accepted manuscript online: 
PACS:  87.15.-v (Biomolecules: structure and physical properties)  
  36.20.-r (Macromolecules and polymer molecules)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31340026), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z13F20019 and LQ12E01003), and the Science and Technology Project of Zhejiang Science and Technology Department, China (Grant No. 2014C31147).
Corresponding Authors:  Wang Xiang-Hong     E-mail:  wxh@wzvtc.cn

Cite this article: 

Jiang Yang-Wei (蒋杨伟), Ran Shi-Yong (冉诗勇), He Lin-Li (何林李), Wang Xiang-Hong (王向红), Zhang Lin-Xi (章林溪) Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments 2015 Chin. Phys. B 24 118701

[1] Jenuwein T and Allis C D;2001 Science 293 1074
[2] Bloomfield V A;1996 Curr. Opin. Struct. Biol. 6 334
[3] Montigny W J, Houchens C R, Illenye S, Gilbert J, Coonrod E, Chang Y C and Heintz N H;2001 Nucleic Acids Res. 29 1982
[4] Blessing T, Remy J S and Behr J P;1998 Proc. Natl. Acad. Sci. USA 95 1427
[5] Chai A, Ran S, Zhang D, Jiang Y, Yang G and Zhang L;2013 Chin. Phys. B 22 098701
[6] Ou Z and Muthukumar M;2005 J. Chem. Phys. 123 074905
[7] Wang Y, Ran S, Man B Y and Yang G C;2011 Soft Matter 7 4425
[8] Kleideiter G and Nordmeier E;1999 Polymer 40 4013
[9] Kundu T K and Rao M R S;1995 Biochemistry 34 5143
[10] Lerman L S;1971 Proc. Natl. Acad. Sci. USA 68 1886.
[11] Vasilevskaya V V, Khokhlov A R, Matsuzawa Y and Yoshikawa K;1995 J. Chem. Phys. 102 6595
[12] Yang Z, Zhang D, Zhang L, Chen H and Liang H;2011 Soft Matter 7 6836
[13] Dai F, Wang P, Wang Y, Tang L, Yang J, Liu W, Li H and Wang G;2008 Polymer 49 5322
[14] Hou X, Zhang X, Wei K, Ji C, Dou S, Wang W, Li M and Wang P;2009 Nucleic Acids Res. 37 1400
[15] Widom J and Baldwin R L;1980 J. Mol. Biol. 144 431
[16] Saminathan M, Thomas T, Shirahata A, Pillai C K S and Thomas T J;2002 Nucleic Acids Res. 30 3722
[17] Rau D C and Parsegian V A;1992 Biophys. J. 61 246
[18] Tan Z and Chen S;2006 Biophys. J. 91 518
[19] DeRouchey J, Parsegian V A and Rau D C;2010 Biophys. J. 99 2608
[20] Armstrong J A and Emerson B M;1998 Curr. Opin. Genet. & Develop. 8 165
[21] Zlatanova J, Leuba S H and van Holde K;1998 Biophys. J. 74 2554
[22] Zimmerman S B and Murphy L D;1996 FEBS Lett. 390 245
[23] Sun M, Louie D and Serwer P;1999 Biophys. J. 77 1627
[24] Tian W and Ma Y;2013 Chem. Soc. Rev. 42 705
[25] Carlstedt J, Gonzalez-Perez A, Alatorre-Meda M, Dias R S and Lindman B;2010 Int. J. Biol. Macromol. 46 153
[26] Jorge A F, Dias R S and Paris A A C C;2012 Biomacromolecules 13 3151
[27] Dias R S, Lindman B and Miguel M G;2002 J. Phys. Chem. B 106 12608
[28] Gonzalea-Perez A, Dias R S, Nylander T and Lindman B;2008 Biomacromolecules 9 772
[29] He Y, Xu S, Sun D, Shang Y Z, Zhao X and Liu H;2013 Colloid Polym. Sci. 291 2139
[30] Muthukumar M;1996 J. Chem. Phys. 105 5183
[31] Liu S, Ghosh K and Muthukumar M;2003 J. Chem. Phys. 119 1813
[32] Hsiao P Y and Luijten E;2006 Phys. Rev. Lett. 97 148301
[33] Ainalem M L and Nylander T;2011 Soft Matter 7 4577
[34] Jiang Y, Zhang D, Zhang Y, Deng Z and Zhang L;2014 J. Chem. Phys. 140 204912
[35] Chai A, Jiang Y, Zhang Y Y, He L, Zhang D and Zhang L;2014 Soft Matter 10 4875
[36] Plimption S 1995 J. Chem. Phys. 117 1
[37] Kubo R 1966 Rep. Prog. Phys. 29 255
[38] Deserno M and Holm C;1998 J. Chem. Phys. 109 7678
[39] Deserno M and Holm C;1998 J. Chem. Phys. 109 7694
[40] Eastwood J W, Hockney R W and Lawrence D N;1980 Comput. Phys. Commun. 19 215
[41] Porod G;1949 Monatsh. Chem. 80 251
[42] Kratky O and Porod G 1949 Rec. Trav. Chim. Pays-Bas. 68 1106
[43] Li D, Banon S and Biswal S L 2010 Soft Matter 6 4197
[44] Koslover E F and Spakowitz A J;2009 Phys. Rev. Lett. 102 178102
[45] Lennard-Jones J E;1924 Proc. R. Soc. Lond. A 106 463
[46] Grest G S and Kremer K;1986 Phys. Rev. A 33 3628
[47] Manning G;1969 J. Chem. Phys. 51 924
[48] Lee N and Thirumalai N;2001 Macromolecules 34 3446
[49] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Oxford University Press) p. 317
[50] Solc K and Stockmayer W H;1971 J. Chem. Phys. 54 2756
[51] Solc K;1971 J. Chem. Phys. 55 335
[52] Tian W and Ma Y;2009 J. Phys. Chem. B 113 13161
[53] Nguyen T T, Rouzina I and Shklovskii B I;2000 J. Chem. Phys. 112 2562
[54] Wang F, Wu Y and Tan Z;2013 Biopolymers 99 370
[55] Yang J and Rau D C;2005 Biophys. J. 89 1932
[56] Raspaud E, de la Cruz M O, Sikorav J L and Livolant F 1988 Biophys. J. 74 381
[57] Lin Z, Wang C, Feng X, Liu M, Li J and Bai C;1998 Nucl. Acids Res. 26 3228
[58] Fang Y and Hoh J H;1998 J. Am. Chem. Soc. 120 8903
[59] Wang Y, Ran S, Man B and Yang G;2011 Colloids and Surf. B: Biointerfaces 83 61
[60] Hansma H G and Laney D E;1996 Biophys. J. 70 1933
[61] Thomson N H, Kasas K, Smith B, Hansma H G and Hansma P K;1996 Langmuir 12 5905
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!