Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078109    DOI: 10.1088/1674-1056/24/7/078109
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol

Xiao Hong-Jun (肖红君)a b, Shen Cheng-Min (申承民)a b, Shi Xue-Zhao (时雪钊)a, Yang Su-Dong (杨苏东)a, Tian Yuan (田园)a b, Lin Shao-Xiong (林少雄)a, Gao Hong-Jun (高鸿钧)a b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Monodisperse AuPd bimetallic nanoparticles (NPs) with different compositions are synthesized by using oleylamine (OAm) as reducing reagent, stabilizer, and solvent. To obtain AuPd solid solution NPs, Pd–OAm and Au–OAm precursors are firstly prepared by mixing OAm with Palladium (II) acetylacetonate (Pd(acac)2) and HAuCl4, respectively. Then Pd–OAm and Au–OAm precursor solutions are injected into a hot oleylamine solution to form AuPd NPs. The size of these NPs ranges from 6.0 to 8.0 nm and the composition is controlled by varying the precursor ratio. The AuPd NPs are loaded onto reduced graphene oxide (RGO) sheets to make catalysts. Alloy NPs show high electrocatalytic activity and stability toward methanol oxidation in the alkaline media. Their catalytic activity for methanol oxidation is found to be dependent on the NP composition. As the Pd component increases, the peak current densities during the forward scan gradually increase and reach the maximum at AuPd2. The enhancement of alloy NPs for methanol oxidation can be attributed to a synergistic effect of Au and Pd on the surface of alloy NPs.

Keywords:  AuPd alloy nanoparticles      reduced graphene oxide      methanol oxidation  
Received:  03 May 2015      Revised:  11 May 2015      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  82.47.-a (Applied electrochemistry)  
  88.30.M- (Fuel cell component materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61335006) and the National Basic Research Program of China (Grant No. 2013CBA01603).

Corresponding Authors:  Gao Hong-Jun     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Xiao Hong-Jun (肖红君), Shen Cheng-Min (申承民), Shi Xue-Zhao (时雪钊), Yang Su-Dong (杨苏东), Tian Yuan (田园), Lin Shao-Xiong (林少雄), Gao Hong-Jun (高鸿钧) Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol 2015 Chin. Phys. B 24 078109

[1] Gasteiger H A and Marković N M 2009 Science 324 48
[2] Vielstich W, Lamm A and Gasteiger H A 2009 Handbook of Fuel Cells-Fundamentals, Technology and Applications (John Wiley & Sons Chichester)
[3] Larsen R, Ha S, Zakzeski J and Masel R I 2006 J. Power Sources 157 78
[4] Wang B 2005 J. Power Sources 152 1
[5] Bianchini C and Shen P K 2009 Chem. Rev. 109 4183
[6] Burda C, Chen X B, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025
[7] Tsuda T, Yoshii K, Torimoto T and Kuwabata S 2010 J. Power Sources 195 5980
[8] Mazumder V and Sun S H 2009 J. Am. Chem. Soc. 131 4588
[9] Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagége A, Audonnet F and Remita H 2009 Chem. Mater. 21 1612
[10] Sun P, Zhang X G, Liu R L, Liang Y Y and Li H L 2008 J. Power Sources 185 801
[11] Zhang L L, Lu T H, Bao J C, Tang Y W and Li C 2006 Electrochem. Comm. 8 1625
[12] Baldauf M and Kolb D M 1996 J. Phys. Chem. 100 11375
[13] Hoshi N, Kida K, Nakamura M, Nakada M and Osada K 2006 J. Phys. Chem. B 110 12480
[14] Xu C W, Wang H, Shen P K and Jiang S P 2007 Adv. Mater. 19 4256
[15] Mackiewicz N, Surendran G, Remita H, Keita B, Zhang G J, Nadjo L, Hagége A, Doris E and Mioskowski C 2008 J. Am. Chem. Soc. 130 8110
[16] Lim B K, Jiang M J, Cama P H C, Cho E C, Tao J, Lu X M, Zhu Y M and Xia Y N 2009 Science 324 1302
[17] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z and Sun K 2009 Angew. Chem. Int. Ed. 48 4217
[18] Schmidt T J, Gasteiger H A and Behm R J 1999 Electrochem. Commun. 1 1
[19] Gasteiger H A, Kocha S S, Sompalli B and Wagner F T 2005 Appl. Catal. B Environ. 56 9
[20] Suntivich J, Xu Z C, Carlton C E, Kim J, Han B, Lee S W, Bonnet N, Marzari N, Allard L F, Gasteiger H A, Hamad-Schifferli K and Shao-Horn Y 2013 J. Am. Chem. Soc. 135 7985
[21] Kang Y J and Murray C B 2010 Am. Chem. Soc. 132 7568
[22] Maillard F, Bonnefont A, Chatenet M, Guétaz L, Doisneau-Cottignies B, Roussel H and Stimming U 2007 Electrochimica Acta 53 811
[23] Jiang J H and Kucernak A 2009 Electroanal. Chem. 630 10
[24] Mazumder V, Chi M F, More K L and Sun S H 2010 J. Am. Chem. Soc. 132 7848
[25] Toshima N and Yonezawa T 1998 New J. Chem. 1179
[26] Guczi L, Beck A, Horváth A, Koppány Z, Stefler G, Frey K, Sajó I, Geszti O, Bazin D and Lynch J 2003 Mol. Catal. A: Chem. 204 545
[27] Scott R W J, Wilson O M, Oh S K, Kenik E A and Crooks R M 2004 J. Am. Chem. Soc 126 15583
[28] Devarajan S, Bera P and Sampath S 2005 J. Coll. Int. Sci. 290 117
[29] Nie M, Tang H L, Wei Z D, Jiang S P and Shen P K 2007 Electrochem. Comm. 9 2375
[30] Hou W B, Dehm N A and Scott R W J 2008 J. Catalysis 253 22
[31] Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H and Gao H J 2008 Chem. Mater. 20 6939
[32] Herzing A A, Carley A F, Edwards J K, Hutchings G J and Kiely C J 2008 Chem. Mater. 20 1492
[33] Liu M M, Zhang R Z and Chen W 2014 Chem. Rev. 114 5117
[34] Yang S D, Dong J, Yao Z H, Shen C M, Shi X Z, Tian Y, Lin S X and Zhang X G 2014 Sci. Rep. 4 4501
[35] Yang S D, Shen C M, Tian Y, Zhang X G and Gao H J 2014 Nanoscale 6 13154
[36] Moussa S, Siamaki A R, Gupton B F and El-Shall M S 2012 ACS Catal. 2 145
[37] Xu Z C, Shen C M, Hou Y L, Gao H J and Sun S H 2009 Chem. Mater. 21 1778
[38] Xu Z C, Carlton C E, Allard L F, Yang S H and Hamad-Schifferli K 2010 J. Phys. Chem. Lett. 1 2514
[39] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[40] Ding Y, Fan F R, Tian Z Q and Wang Z L 2010 J. Am. Chem. Soc. 132 12480
[41] Mulvaney P 1996 Langmuir 12 788
[42] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[43] Datta J, Dutta A and Mukherjee S 2011 J. Phys. Chem. C 115 15324
[44] Lee Y W, Kim M J, Kim Y N, Kang S W, Lee J H and Han S W 2010 J. Phys. Chem. C 114 7689
[45] Tominaga M, Shimazoe T, Nagashima M, Kusuda H, Kubo A, Kuwahara Y and Taniguchi I 2006 J. Electroanal. Chem. 590 37
[46] Simões M, Baranton S and Coutanceau C 2009 J. Phys. Chem. C 113 13369
[47] Rand D A J and Woods R 1972 Electroanal. Chem 36 57
[48] Wu M L, Chen D H and Huang T C 2001 Langmuir 17 3877
[49] Lee Y W, Kim N H, Lee K Y, Kwon K Y, Kim M J and Han S W 2008 J. Phys. Chem. C 112 6717
[50] Burke L D, Moran J M and Nugent P F 2003 J. Solid State Electrochem. 7 529
[51] Habrioux A, Sibert E, Servat K, Vogel W, Kokoh K B and Alonso-Vante N 2007 J. Phys. Chem. B 111 10329
[52] Mott D, Luo J, Njoki P N, Lin Y, Wang L G and Zhong C J 2007 Catalysis Today 122 378
[53] Xu C W, Tian Z Q, Chen Z C and Jiang S P 2008 Electrochem. Comm. 10 246
[54] Dong J, Yao Z H, Yang T Z, Jiang L L and Shen C M 2013 Sci. Rep. 3 1733
[55] Sharma S, Ganguly A, Papakonstantinou P, Miao X P, Li M X, Hutchison J L, Delichatsios M and Ukleja S 2010 J. Phys. Chem. C 114 19459
[1] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[2] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[5] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[6] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[7] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[8] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[9] Graphene resistive random memory–the promising memory device in next generation
Xue-Feng Wang(王雪峰), Hai-Ming Zhao(赵海明), Yi Yang(杨轶), Tian-Ling Ren(任天令). Chin. Phys. B, 2017, 26(3): 038501.
[10] Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide
Ali Badawi. Chin. Phys. B, 2015, 24(4): 047205.
[11] Complete coverage of reduced graphene oxide on silicon dioxide substrates
Huang Jingfeng, Melanie Larisika, Chen Hu, Steve Faulkner, Myra A. Nimmo, Christoph Nowak, Alfred Tok Iing Yoong. Chin. Phys. B, 2014, 23(8): 088104.
[12] Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
Zhao Na (赵娜), Wen Chen-Yu (文宸宇), Zhang David Wei (张卫), Wu Dong-Ping (吴东平), Zhang Zhi-Bin (张志滨), Zhang Shi-Li (张世理). Chin. Phys. B, 2014, 23(12): 128101.
[13] Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation
Ding Hao(丁皓), Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Wang Deng-Ke(王登科), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(10): 106104.
No Suggested Reading articles found!