Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088801    DOI: 10.1088/1674-1056/25/8/088801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

Tong-Fang Liu(刘统方)1, Yu-Feng Hu(胡煜峰)1, Zhen-Bo Deng(邓振波)1, Xiong Li(李熊)2, Li-Jie Zhu(朱丽杰)1, Yue Wang(王越)1, Long-Feng Lv(吕龙锋)1, Tie-Ning Wang(王铁宁)1, Zhi-Dong Lou(娄志东)1, Yan-Bing Hou(侯延冰)1, Feng Teng(滕枫)1
1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
2 Department of Physics, Beijing Technology and Business University, Beijing 100048, China
Abstract  The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells.
Keywords:  sodium chloride      methanol      polymer solar cell      phase separation  
Received:  27 January 2016      Revised:  25 February 2016      Accepted manuscript online: 
PACS:  88.40.jr (Organic photovoltaics)  
  84.60.Jt (Photoelectric conversion)  
  64.75.St (Phase separation and segregation in thin films)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).
Corresponding Authors:  Yu-Feng Hu, Zhen-Bo Deng     E-mail:  yfhu@bjtu.edu.cn;zbdeng@bjtu.edu.cn

Cite this article: 

Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫) Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells 2016 Chin. Phys. B 25 088801

[1] Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153
[2] Dou L, You J, Hong Z, Xu Z, Li G, Street R A and Yang Y 2013 Adv. Mater. 25 6642
[3] Heeger A J 2014 Adv. Mater. 26 10
[4] Yang F, Shtein M and Forrest S R 2005 Nat. Mater. 4 37
[5] Blom P W M, Mihailetchi V D, Koster L J A and Markov D E 2007 Adv. Mater. 19 1551
[6] Ma W, Yang C, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
[7] Fan X, Zhao S L, Chen Y, Zhang J, Yang Q, Gong W, Xu Z and Xu X 2015 Chin. Phys. Lett. 32 161
[8] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[9] Xiao Z, Yuan Y, Yang B, VanDerslice J, Chen J, Dyck O, Duscher G and Huang J 2014 Adv. Mater. 26 3068
[10] Yan S, Lv L, Ning Y, Qin L, Li C, Liu X, Hu Y, Lou Z, Teng F and Hou Y 2015 Phys. Status Solidi A 212 2169
[11] Laquai F, Andrienko D, Mauer R and Blom P W M 2015 Macromol. Rapid Comm. 36 1001
[12] Zhou H, Zhang Y, Seifter J, Collins S D, Luo C, Bazan G C, Nguyen T and Heeger A J 2013 Adv. Mater. 25 1646
[13] Li H, Tang H, Li L, Xu W, Zhao X and Yang X 2011 J. Mater. Chem. 21 6563
[14] Liu Y, Lv L, Ning Y, Lu Y, Lu Q, Zhang C, Fang Y, Tang A, Hu Y, Lou Z, Teng F and Hou Y 2014 Chin. Phys. B 23 118802
[15] Chen F, Chen Q, Mao L, Wang Y, Huang X, Lu W, Wang B and Chen L 2013 Nanotechnology 24 484011
[16] Small C E, Chen S, Subbiah J, Amb C M, Tsang S, Lai T, Reynolds J R and So F 2012 Nat. Photon. 6 115
[17] Sun Y, Seo J H, Takacs C J, Seifter J and Heeger A J 2011 Adv. Mater. 23 1679
[18] Choi H, Park J S, Jeong E, Kim G H, Lee B R, Kim S O, Song M H, Woo H Y and Kim J Y 2011 Adv. Mater. 23 2759
[19] Lv L, Lu Q, Ning Y, Lu Z, Wang X, Lou Z, Tang A, Hu Y, Teng F, Yin Y and Hou Y 2015 Chem. Mater. 27 44
[20] De Boer B, Hadipour A, Mandoc M M, van Woudenbergh T and Blom P W 2005 Adv. Mater. 17 621
[21] Brabec C J, Shaheen S E, Winder C, Sariciftci N S and Denk P 2002 Appl. Phys. Lett. 80 1288
[22] Padinger F, Rittberger R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[23] Huang J, Xu Z and Yang Y 2007 Adv. Funct. Mater. 17 1966
[24] Li G, Chu C W, Shrotriya V, Huang J and Yang Y 2006 Appl. Phys. Lett. 88 253503
[25] Reinhard M, Hanisch J, Zhang Z, Ahlswede E, Colsmann A and Lemmer U 2011 Appl. Phys. Lett. 98 53303
[26] Nickel F, Reinhard M, Zhang Z, Pütz A, Kettlitz S, Lemmer U and Colsmann A 2012 Appl. Phys. Lett. 101 53309
[27] Yahiro M, Zou D and Tsutsui T 2000 Synthetic Met. 111 245
[28] Norrman K, Ma dsen M V, Gevorgyan S A and Krebs F C 2010 J. Am. Chem. Soc. 132 16883
[29] Shambayati S 2011 "Degradation of P3HT:PCBM-based Conjugated Polymer Solar Cells", MS Dissertation (Vancouver:University of British Columbia)
[30] Zang H, Hsiao Y and Hu B 2014 Phys. Chem. Chem. Phys. 16 4971
[31] Zhang K, Hu Z, Duan C, Ying L, Huang F and Cao Y 2013 Nanotechnology 24 484003
[32] Hsiao Y, Zang H, Ivanov I, Xu T, Lu L, Yu L and Hu B 2014 J. Appl. Phys. 115 154506
[33] Seo J H, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger A J and Bazan G C 2011 J. Am. Chem. Soc. 133 8416
[34] Leever B J, Bailey C A, Marks T J, Hersam M C and Durstock M F 2012 Adv. Energy Mater. 2 120
[35] You J, Chen C, Dou L, Murase S, Duan H, Hawks S A, Xu T, Son H J, Yu L, Li G and Yang Y 2012 Adv. Mater. 24 5267
[1] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[2] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[3] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[4] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[5] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[6] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[7] Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2019, 28(7): 076107.
[8] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[9] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[10] Monitoring the formation of oil-water emulsions with a fast spatially resolved NMR spectroscopy method
Meng-Ting You(游梦婷), Zhi-Liang Wei(韦芝良), Jian Yang(杨健), Xiao-Hong Cui(崔晓红), Zhong Chen(陈忠). Chin. Phys. B, 2018, 27(2): 028201.
[11] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[12] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[13] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[14] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[15] Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes
Xiao-Jie Chen(陈晓洁), Qing Liang(梁清). Chin. Phys. B, 2017, 26(4): 048701.
No Suggested Reading articles found!