Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106801    DOI: 10.1088/1674-1056/ab3af1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments

Wenjun Yan(闫文君)1, Xiaomin Zeng(曾小敏)2, Huan Liu(刘欢)1, Chunwei Guo(郭春伟)1, Min Ling(凌敏)2, Houpan Zhou(周后盘)1
1 Smart City Research Center, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  

A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3 (α-Fe2O3) nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems (MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy (TEM), Raman spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280 ℃. The sensor shows excellent selectivity to ethanol. For various ethanol concentrations (1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280 ℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at 280 ℃ when the relative humidity (RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things (IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed.

Keywords:  α-Fe2O3      ethanol sensor      chemi-resistive      in realistic environment      micro-electro-mechanical systems (MEMS)  
Received:  13 June 2019      Revised:  29 July 2019      Accepted manuscript online: 
PACS:  68.55.ag (Semiconductors)  
  81.07.Bc (Nanocrystalline materials)  
  68.47.Fg (Semiconductor surfaces)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: 

Project supported by the Research Foundation of Hangzhou Dianzi University, China and 2011 Zhejiang Regional Collaborative Innovation Center for Smart City, China.

Corresponding Authors:  Wenjun Yan, Houpan Zhou     E-mail:  yanwenjun@hdu.edu.cn;houpan@hdu.edu.cn

Cite this article: 

Wenjun Yan(闫文君), Xiaomin Zeng(曾小敏), Huan Liu(刘欢), Chunwei Guo(郭春伟), Min Ling(凌敏), Houpan Zhou(周后盘) Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments 2019 Chin. Phys. B 28 106801

[1] Gao X and Zhang T 2018 Sens. Actuator B-Chem. 277 604
[2] Walker J M, Akbar S A and Morris P A 2019 Sens. Actuator B-Chem. 286 624
[3] Zeng P, Zhang P, Hu M, Ma S Y and Yan W J 2014 Chin. Phys. B 23 058103
[4] Yan W J, Hu M, Liang J R, Wang D F, Wei Y L and Qin Y X 2016 Chin. Phys. B 25 040702
[5] Wang D F, Liang J R, Li C Q, Yan W J and Hu M 2016 Chin. Phys. B 25
[6] Machala L, Tucek J and Zboril R 2011 Chem. Mater. 23 3255
[7] Zolghadr S, Khojier K and Kimiagar S 2016 Mater. Sci. Semicond. Process. 54 6
[8] Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S G and Neri G 2015 Nanomaterials 5 737
[9] Wang L, Lee C Y and Schmuki P 2013 Electrochim. Acta 91 307
[10] Nasibi M, Golozar M A and Rashed G 2013 Mater. Chem. Phys. 139 12
[11] Xu Y Y, Rui X F, Fu Y Y and Zhang H 2005 Chem. Phys. Lett. 410 36
[12] Xu P A, Zeng G M, Huang D L, Feng C L, Hu S, Zhao M H, Lai C, Wei Z, Huang C, Xie G X and Liu Z F 2012 Sci. Total Environ. 424 1
[13] Wang L L, Fei T, Lou Z and Zhang T 2011 ACS Appl. Mater. Interfaces 3 4689
[14] Wang Y, Cao J L, Wang S R, Guo X Z, Zhang J, Xia H J, Zhang S M and Wu S H 2008 J. Phys. Chem. C 112 17804
[15] Wu Z L, Li Z J, Li H, Sun M X, Han S B, Cai C, Shen W Z and Fu Y Q 2019 ACS Appl. Mater. Interfaces 11 12761
[16] Hjiri M, Aida M S and Neri G 2019 Sensors 19
[17] Bandgar D K, Navale S T, Khuspe G D, Pawar S A, Mulik R N and Patil V B 2014 Mater. Sci. Semicond. Process. 17 67
[18] Yang T Y, Wang D X, Zhai C B, Luo Y and Zhang M Z 2018 Mater. Lett. 210 1
[19] Lou Z, Li F, Deng J A, Wang L L and Zhang T 2013 ACS Appl. Mater. Interfaces 5 12310
[20] Li Z, Huang Y, Zhang S, Chen W, Zhong K, Ao D, Wei L and Fu Y 2015 J. Hazard. Mater. 300 167
[21] Li Z, Lin Z, Wang N, Huang Y, Wang J, Wei L, Fu Y and Wang Z 2016 Mater. & Des. 110 532
[22] Yan W J, Worsley M A, Pham T, Zettl A, Carraro C and Maboudian R 2018 Appl. Surf. Sci. 450 372
[23] Donarelli M, Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Santucci S and Ottaviano L 2015 2D Mater. 2 9
[24] Hoefer U, Frank J and Fleischer M 2001 Sens. Actuator B-Chem. 78 6
[25] Moore G E 1998 Proc. IEEE 86 82
[26] Amendola S, Lodato R, Manzari S, Occhiuzzi C and Marrocco G 2014 Ieee Int. Things 1 144
[27] Liu H T, Zhang L, Li K H H and Tan O K 2018 Micromachines 9
[28] Cao H, Wang G, Zhang L, Liang Y, Zhang S and Zhang X 2006 ChemPhysChem 7 1897
[29] Chen S, Bao P and Wang G 2013 Nano Energy 2 425
[30] Ma Y, Yang J, Yuan Y K, Zhao H, Shi Q, Zhang F J, Pei C J, Liu B and Yang H Q 2017 Langmuir 33 8671
[31] Sun P, Wang W, Liu Y, Sun Y, Ma J and Lu G 2012 Sens. & Actuators B Chem. 173 52
[32] Li Z, Li H, Wu Z, Wang M and Fu Y Q 2019 Mater. Horizons 6
[33] Rothschild A and Komem Y 2004 J. Appl. Phys. 95 6374
[34] Garzella C, Comini E, Tempesti E, Frigeri C and Sberveglieri G 2000 Sens. Actuators B: Chem. 68 189
[1] Excellent ethanol sensing properties based on Er2O3-Fe2O3 nanotubes
Liu Chang-Bai (刘唱白), He Ying (何滢), Wang Sheng-Lei (王圣蕾). Chin. Phys. B, 2015, 24(11): 118501.
No Suggested Reading articles found!