Abstract We report on the fabrication and performance of a room-temperature NO2 gas sensor based on a WO3 nanowires/porous silicon hybrid structure. The W18O49 nanowires are synthesized directly from a sputtered tungsten film on a porous silicon (PS) layer under heating in an argon atmosphere. After a carefully controlled annealing treatment, WO3 nanowires are obtained on the PS layer without losing the morphology. The morphology, phase structure, and crystallinity of the nanowires are investigated by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and high-resolution transmission electron microscopy (HRTEM). Comparative gas sensing results indicate that the sensor based on the WO3 nanowires exhibits a much higher sensitivity than that based on the PS and pure WO3 nanowires in detecting NO2 gas at room temperature. The mechanism of the WO3 nanowires/PS hybrid structure in the NO2 sensing is explained in detail.
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271070, 61274074, and 60771019) and the Key Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant No. 11JCZDJC15300).
Corresponding Authors:
Hu Ming
E-mail: huming@tju.edu.cn
About author: 81.07.-b; 07.07.Df; 61.46.-w; 73.40.Lq
Cite this article:
Zeng Peng (曾鹏), Zhang Ping (张平), Hu Ming (胡明), Ma Shuang-Yun (马双云), Yan Wen-Jun (闫文君) Synthesis and room-temperature NO2 gas sensing properties of a WO3 nanowires/porous silicon hybrid structure 2014 Chin. Phys. B 23 058103
[1]
Boarino L, Baratto C, Geobaldo F, Amato G, Comini E, Rossi A M, Faglia G, Lérondel G and Sberveglieri G 2000 Mater. Sci. Eng. B 69 210
[2]
Eranna G, Joshi B C, Runthala D P and Gupta R P 2004 Crit. Rev. Solid State Mater. Sci. 29 111
[3]
Rava M, Verlato G, Bono R, Ponzio M, Sartori S, Blengio G, Kuenzli N, Heinrich J, GötschiT and Marco R 2007 Sci. Total Environ. 384 163
[4]
Zhao Y, He X L, Li J P, Jia J and Gao X G 2012 Chin. Phys. Lett. 29 070701
[5]
Afzal A, Cioffi N, Sabbatini L and Torsi L 2012 Sens. Actuat. B 171 25
[6]
Xu L, Wang R, Liu Y and Dong L 2011 Chin. Phys. Lett. 28 040701
[7]
Belysheva T V, Bogovtseva L P, Kazachkov E A and Serebryakova N V 2003 J. Anal. Chem. 58 583
[8]
Kim I, Rothschild A, Lee B Y, Kim D Y, Jo S M and Tuller H L 2006 Nano Lett. 6 2009
[9]
Ganguly A and George R 2007 Bull. Mater. Sci. 30 183
[10]
Santucci S, Lozzi L, Maccallini E, Passacantando M, Ottaviano L and Cantalini C 2001 J. Vac. Sci. Technol. A 19 1467
[11]
Siciliano T, Tepore A, Micocci G, Serra A, Manno D and Filippo E 2008 Sens. Actuat. B 133 321
[12]
Liu Z F, Yamazaki T, Shen Y B, Kikuta T and Nakatani N 2007 Sens. Actuat. B 128 173
[13]
Deb B, Desai S, SumanasekeraG U and Sunkara M K 2007 Nanotechnology 18 285501
[14]
Ponzoni A, Russo V, Bailini A, Casari C S, Ferroni M, Bassi A L, Migliori A, Morandi V, Ortolani L, Sberveglieri G and Bottani C E 2011 Sens. Actuat. B 153 340
[15]
Hoa N D, Duy N V and Hieu N V 2013 Mater. Res. Bull. 48 440
[16]
Chen H Q, Hu M, Zeng J and Wang W D 2012 Chin. Phys. B 21 058201
[17]
Li M D, Hu M, Liu Q L, Ma S Y and Sun P 2013 Appl. Surf. Sci. 268 188
[18]
Qin Y X, Hu M and Zhang J 2010 Sens. Actuat. B 150 339
[19]
Sun P, Hu M, Li M D and Ma S Y 2012 Acta Phys. Chim. Sin. 28 489
[20]
Koltypin Y, Nikitenko S I and Gedanken A 2002 J. Mater. Chem. 12 1107
[21]
Shaposhnikov V L, Migas D B, Rodin V N and Borisenko V E 2011 Phys. Stat. Sol. 248 1471
[22]
Klinke C, Hannon J B, Gignac L, Reuter K and Avouris P 2005 J. Phys. Chem. B 109 17787
[23]
Tokunaga T, Kawanoto T, Tanoka K, Nakamura N, Hayashi Y, Sasaki K, Kuroda K and Yamamoto T 2012 Nanoscale Res. Lett. 7 85
[24]
Jeon S and Yong K 2008 J. Mater. Res. 23 1320
[25]
Law M, Kind H, Messer B, Kim F and Yang P D 2002 Angew. Chem. Int. Ed. 41 2405
[26]
Heidari E K, Zamani C, Marzbanrad E, Raissi B and Nazarpour S 2010 Sens. Actuat. B 146 165
[27]
Hieu N V, Quang V V, Hoa H D and Kim D 2011 Curr. Appl. Phys. 11 657
[28]
Su X T, Li Y N, Jian J K and Wang J D 2010 Mater. Res. Bull. 45 1960
[29]
Vallejos S, Khatko V, Aguir K, Ngo K A, Calderer J, Grácia I, Cané C, Llobet E and Correig X 2007 Sens. Actuat. B 126 573
[30]
Park S, Kim H, Jin C, Choi S W, Kim S S and Lee C 2012 Thermochim. Acta 542 69
[31]
Hsu W C, Chan C C, PengC H and Chang C C 2007 Thin Solid Film. 516 407
[32]
Datta N, Ramgir N, Kaur M, Roy M, Bhatt R, Kailasaganapathi S, Debnath A K, Aswal D K and Gupta S K 2012 Mater. Chem. Phys. 134 851
[33]
Gaburro Z, Bettotti P, Saiani M, Pavesi L, Pancheri L, Oton C J and Capuj N 2004 Appl. Phys. Lett. 85 555
[34]
Seals L, Gole J L, Tse L A and Hesketh P J 2002 J. Appl. Phys. 91 2519
[35]
Ali N K, Hashim M R and Aziz A A 2008 Solid State Electron. 52 1071
[36]
Kim S J, Lee S H and Lee C J 2001 J. Phys. D: Appl. Phys. 34 3505
[37]
Salgado G G Becerril T D Santiesteban H J and Andrés E R 2006 Opt. Mater. 29 51
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.