Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117702    DOI: 10.1088/1674-1056/24/11/117702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

Zeng Tao (曾涛)a, Lou Qi-Wei (漏琦伟)a, Chen Xue-Feng (陈学锋)b, Zhang Hong-Ling (张红玲)c, Dong Xian-Lin (董显林)b, Wang Gen-Shui (王根水)b
a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China;
b Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
c National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13 ≤ x ≤ 0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content.
Keywords:  PLZST ceramics      ferroelectricity      antiferroelectricity      phase transition  
Received:  23 March 2015      Revised:  19 May 2015      Accepted manuscript online: 
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.80.B- (Phase transitions and Curie point)  
  77.84.Cg (PZT ceramics and other titanates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).
Corresponding Authors:  Zeng Tao, Chen Xue-Feng     E-mail:  zengtao@shiep.edu.cn;xfchen@mail.sic.ac.cn

Cite this article: 

Zeng Tao (曾涛), Lou Qi-Wei (漏琦伟), Chen Xue-Feng (陈学锋), Zhang Hong-Ling (张红玲), Dong Xian-Lin (董显林), Wang Gen-Shui (王根水) Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content 2015 Chin. Phys. B 24 117702

[1] Xu B M, Ye Y H and Cross L E;2000 J. Appl. Phys. 87 2507
[2] Zhou L J, Zhao Z and Zimmermann A;2004 J. Am. Ceram. Soc. 87 606
[3] Zhou L J, Rixecker G, Zimmermann A, Aldinger E, Zhao Z and Nygren M;2005 J. Am. Ceram. Soc. 88 2952
[4] Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y and Cao M S;2009 Chin. Phys. B 18 2596
[5] Markowski K, Park S E, Yoshikawa S and Cross L E;1996 J. Am. Ceram. Soc. 79 3297
[6] Chan W H, Xu Z, Zhang Y, Hung T F and Chen H D;2003 J. Appl. Phys. 94 4563
[7] Fu Z Y, Zhang J C, Hu J H, Jiang Y L, Ding S J and Zhu G D;2015 Chin. Phys. B 24 058502
[8] Fang S X, Tang D Y, Chen Z M, Zhang H and Liu Y L;2015 Chin. Phys. B 24 027802
[9] Berlincourt D, Jaffe H, Krueger H H A and Jaffe B;1963 Appl. Phys. Lett. 3 90
[10] Mirshekarloo M S, Yao K and Sritharan T;2010 Appl. Phys. Lett. 97 142902
[11] Forst D, Li J F and Viehland D;1997 Appl. Phys. Lett. 71 1472
[12] Frederick J, Tan X L and Jo W;2011 J. Am. Ceram. Soc. 94 1149
[13] Wang J F, Yang T Q, Chen S C and Yao X;2014 Funct. Mater. Lett. 7 1350064
[14] Zhang H L, Chen X F, Cao F, Wang G S, Dong X L, Gu Y, He H L and Liu Y S;2010 J. Appl. Phys. 108 086105
[15] Chen X F, Zhang H L, Cao F, Wang G S, Dong X L, Gu Y, He H L and Liu Y S;2009 J. Appl. Phys. 106 034105
[16] Chen X, Hu Z G, Duan Z H, Chen X F, Wang G S, Dong X L and Chu J H;2013 J. Appl. Phys. 114 043507
[17] Li Y, Li Q, Wang L, Yang Z and Chu X;2011 J. Cryst. Growth 318 860
[18] Hao X H, Zhai J W, Kong L B and Xu Z K;2014 Prog. Mater. Sci. 63 1
[19] Zheng Q N, Yang T Q, Wei K, Wang J F and Yao X;2012 Ceram. Int. 38 S9
[20] Wang L, Li Q, Xue L H and Liang X M;2007 J. Mater. Sci. 42 7397
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!