Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117302    DOI: 10.1088/1674-1056/24/11/117302

Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

Re. Betancourt-Rieraa b, Ri. Betancourt-Rieraa, J. M. Nieto Jalilc, R. Rierab
a Instituto Tecnológico de Hermosillo. Avenida Tecnológico S/N, Col. Sahuaro, C.P. 83170, Hermosillo, Sonora, México;
b Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora, México;
c Tecnológico de Monterrey-Campus Sonora Norte. Bulevar Enrique Mazón López No. 965, C.P. 83000, Hermosillo, Sonora, México
Abstract  We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.
Keywords:  electron states      Raman scattering      selection rules      quantum well wires  
Received:  11 March 2015      Revised:  11 June 2015      Accepted manuscript online: 
PACS:  73.21.Hb (Quantum wires)  
  78.67.Lt (Quantum wires)  
Corresponding Authors:  Re. Betancourt-Riera     E-mail:

Cite this article: 

Re. Betancourt-Riera, Ri. Betancourt-Riera, J. M. Nieto Jalil, R. Riera Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry 2015 Chin. Phys. B 24 117302

[1] Zhoo X F and Liu C H;2007 Phys. Lett. A 364 70
[2] Zhoo X F and Liu C H;2006 Eur. Phys. J. B 53 209
[3] Liu Y, Liang P, Shu H B, Cao D, Dong Q M and Wang L;2014 Chin. Phys. B 23 067304
[4] Xu Z H, Xiao W and Chen Y G;2013 Chin. Phys. Lett. 30 057201
[5] Milekhin A G, Toropov A I, Bakarov A K, Schulze S and Zahn D R T;2006 JETP Lett. 83 505
[6] Milekhin A G, Nikiforov A I, Pchelyakov O P and Pisma Zh. Éksp 2005 Teor. Fiz. 81 33
[7] Milekhin A G, Tenne D A and Zahn D R T 2003 Quantum Dot Structures: Raman and Infrared Spectroscopy, Quantum Dots and Nanowires (Stevenson Ranch: American Scientific Publishers) p. 375
[8] Tenne A D, Bakarov A K, Toropov A I and Zahn D R T;2002 Physica E 13 199
[9] Liang Y, Zhai L, Zhao X and Xu D;2005 J. Phys. Chem. B 109 7120
[10] Liu W, Liu S L, Chen D N and Niu H B;2014 Chin. Phys. B 23 104202
[11] Peng Z L, Liang S and Deng L G;2009 Chin. Phys. Lett. 26 127301
[12] Chou M H, Liu S B, Huang C Y, Wu S Y and Cheng C L;2008 Appl. Surf. Sci. 254 7539
[13] Sood A K, Menéndez J, Cardona M and Ploog K;1985 Phys. Rev. Lett. 54 2115
[14] Zhong Q H and Yi X H;2010 Superlatt. Microstruct. 47 723
[15] Zhong Q H and Sun Y T;2011 Thin Solid Films 519 8178
[16] Wang J, Demangeot F, Pechou R, Ponchet A, Cros A and Daudin B;2012 Phys. Rev. B 85 155432
[17] Livneh T, Zhang J P, Cheng G S and Moskovits M;2006 Phys. Rev. B 74 035320
[18] Laneuville V, Demangeot F, Pchou R, Salles P, Ponchet A, Jacopin G, Rigutti L, de Luna Bugallo A, Tchernycheva M, Julien F H, March K, Zagonel L F and Songmuang R;2011 Phys. Rev. B 83 115417
[19] Liu H L, Chen C C, Chia C, Yeh C C, Chen C H, Yu M Y, Keller S and DenBaars S P;2001 Chem. Phys. Lett. 345 245
[20] Betancourt-Riera R, Rosas R, Marín-Enriquez I, Riera R and Marin J L;2005 J. Phys.: Condens. Matter 17 4451
[21] Betancourt-Riera R, Riera R, Marín J L and Rosas R A 2004 Electron Raman Scattering in Nanostructures, Encyclopedia of Nanoscience and Nanotechnology (Stevenson Ranch: American Scientific Publishers) Vol. 3 p. 101
[22] Kushwaha M S;2001 Surf. Sci. Rep. 41 1
[23] Riera R, Marín J L and Rosas R A;2001 Optical Properties and Impurity States in Nanostructured Materials, Handbook of Advanced Electronic and Photonic Devices (New York: Academic) Vol. 6 chapter 6
[24] Betancourt-Riera R, Betancourt-Riera R, Nieto J J M and Riera R;2013 Physica B 410 126
[25] Betancourt-Riera R, Betancourt-Riera R, Rosas R and Riera R;2012 J. Comput. Theor. Nanosci. 9 1
[26] Lu F, Liu C H and Guo Z L;2012 Physica B 407 165
[27] Zhai L X, Wang Y and Liu J J;2011 J. Appl. Phys. 110 043701
[28] Zhong Q H and Yi X H;2010 Superlattices and Microstructures 47 723
[29] Zhong Q H, Liu C H, Zhang Y Q and Sun H C;2008 Phys. Lett. A 372 2103
[30] Scheinert M, Sigg H and Tsujino S;2007 Appl. Phys. Lett. 91 131108
[31] Ismailov T G and Mehdiyev B H;2006 Physica E 31 72
[32] Bergues J M, Betancourt-Riera R, Riera R and Marin J L;2000 J. Phys.: Condens. Matter 12 7983
[33] Bergues J M, Betancourt-Riera R, Marin J L and Riera R 1996 Phys. Low-Dimens. Struct. 7/8 81
[34] Riera R, Comas F, Trallero-Giner C and Pavlov S T;1988 Phys. Status Solid B 148 533
[35] Comas F, Trallero Giner C and Perez-Alvarez R;1986 J. Phys. C: Solid State Phys. 19 6479
[36] Trallero-Giner C, Ruf T and Cardona M;1990 Phys. Rev. B 41 3028
[37] González de la Cruz G and Trallero-Giner C;1998 Phys. Rev. B 58 9104
[38] Wang M L, Zhang C X, Wu Z L, Jing X L and Xu H J;2014 Chin. Phys. B 23 067802
[39] Jiang S M, Wu D J, Wu X W and Liu X J;2014 Chin. Phys. B 23 047807
[40] Wang M, Tian Y, Zhang J M, Guo C F, Zhang X Z and Liu Q;2014 Chin. Phys. B 23 087803
[41] Shi L K and Lou W K;2014 Chin. Phys. Lett. 31 067304
[42] Betancourt-Riera R, Nieto Jalil J M, Riera R, Betancourt-Riera R and Rosas R;2008 J. Phys.: Condens. Matter 20 045203
[43] Betancourt-Riera R, Betancourt-Riera R, Jordán Hernández R and Riera R 2012 Revista Electrónica Nova Scientia 9 89
[44] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[7] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[8] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[9] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[10] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[11] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[14] Research on co-propagation of QKD and classical communication by reducing the classical optical power
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(4): 040303.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!