CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry |
Re. Betancourt-Rieraa b, Ri. Betancourt-Rieraa, J. M. Nieto Jalilc, R. Rierab |
a Instituto Tecnológico de Hermosillo. Avenida Tecnológico S/N, Col. Sahuaro, C.P. 83170, Hermosillo, Sonora, México; b Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora, México; c Tecnológico de Monterrey-Campus Sonora Norte. Bulevar Enrique Mazón López No. 965, C.P. 83000, Hermosillo, Sonora, México |
|
|
Abstract We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.
|
Received: 11 March 2015
Revised: 11 June 2015
Accepted manuscript online:
|
PACS:
|
73.21.Hb
|
(Quantum wires)
|
|
78.67.Lt
|
(Quantum wires)
|
|
Corresponding Authors:
Re. Betancourt-Riera
E-mail: rbriera@gmail.com
|
Cite this article:
Re. Betancourt-Riera, Ri. Betancourt-Riera, J. M. Nieto Jalil, R. Riera Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry 2015 Chin. Phys. B 24 117302
|
[1] |
Zhoo X F and Liu C H;2007 Phys. Lett. A 364 70
|
[2] |
Zhoo X F and Liu C H;2006 Eur. Phys. J. B 53 209
|
[3] |
Liu Y, Liang P, Shu H B, Cao D, Dong Q M and Wang L;2014 Chin. Phys. B 23 067304
|
[4] |
Xu Z H, Xiao W and Chen Y G;2013 Chin. Phys. Lett. 30 057201
|
[5] |
Milekhin A G, Toropov A I, Bakarov A K, Schulze S and Zahn D R T;2006 JETP Lett. 83 505
|
[6] |
Milekhin A G, Nikiforov A I, Pchelyakov O P and Pisma Zh. Éksp 2005 Teor. Fiz. 81 33
|
[7] |
Milekhin A G, Tenne D A and Zahn D R T 2003 Quantum Dot Structures: Raman and Infrared Spectroscopy, Quantum Dots and Nanowires (Stevenson Ranch: American Scientific Publishers) p. 375
|
[8] |
Tenne A D, Bakarov A K, Toropov A I and Zahn D R T;2002 Physica E 13 199
|
[9] |
Liang Y, Zhai L, Zhao X and Xu D;2005 J. Phys. Chem. B 109 7120
|
[10] |
Liu W, Liu S L, Chen D N and Niu H B;2014 Chin. Phys. B 23 104202
|
[11] |
Peng Z L, Liang S and Deng L G;2009 Chin. Phys. Lett. 26 127301
|
[12] |
Chou M H, Liu S B, Huang C Y, Wu S Y and Cheng C L;2008 Appl. Surf. Sci. 254 7539
|
[13] |
Sood A K, Menéndez J, Cardona M and Ploog K;1985 Phys. Rev. Lett. 54 2115
|
[14] |
Zhong Q H and Yi X H;2010 Superlatt. Microstruct. 47 723
|
[15] |
Zhong Q H and Sun Y T;2011 Thin Solid Films 519 8178
|
[16] |
Wang J, Demangeot F, Pechou R, Ponchet A, Cros A and Daudin B;2012 Phys. Rev. B 85 155432
|
[17] |
Livneh T, Zhang J P, Cheng G S and Moskovits M;2006 Phys. Rev. B 74 035320
|
[18] |
Laneuville V, Demangeot F, Pchou R, Salles P, Ponchet A, Jacopin G, Rigutti L, de Luna Bugallo A, Tchernycheva M, Julien F H, March K, Zagonel L F and Songmuang R;2011 Phys. Rev. B 83 115417
|
[19] |
Liu H L, Chen C C, Chia C, Yeh C C, Chen C H, Yu M Y, Keller S and DenBaars S P;2001 Chem. Phys. Lett. 345 245
|
[20] |
Betancourt-Riera R, Rosas R, Marín-Enriquez I, Riera R and Marin J L;2005 J. Phys.: Condens. Matter 17 4451
|
[21] |
Betancourt-Riera R, Riera R, Marín J L and Rosas R A 2004 Electron Raman Scattering in Nanostructures, Encyclopedia of Nanoscience and Nanotechnology (Stevenson Ranch: American Scientific Publishers) Vol. 3 p. 101
|
[22] |
Kushwaha M S;2001 Surf. Sci. Rep. 41 1
|
[23] |
Riera R, Marín J L and Rosas R A;2001 Optical Properties and Impurity States in Nanostructured Materials, Handbook of Advanced Electronic and Photonic Devices (New York: Academic) Vol. 6 chapter 6
|
[24] |
Betancourt-Riera R, Betancourt-Riera R, Nieto J J M and Riera R;2013 Physica B 410 126
|
[25] |
Betancourt-Riera R, Betancourt-Riera R, Rosas R and Riera R;2012 J. Comput. Theor. Nanosci. 9 1
|
[26] |
Lu F, Liu C H and Guo Z L;2012 Physica B 407 165
|
[27] |
Zhai L X, Wang Y and Liu J J;2011 J. Appl. Phys. 110 043701
|
[28] |
Zhong Q H and Yi X H;2010 Superlattices and Microstructures 47 723
|
[29] |
Zhong Q H, Liu C H, Zhang Y Q and Sun H C;2008 Phys. Lett. A 372 2103
|
[30] |
Scheinert M, Sigg H and Tsujino S;2007 Appl. Phys. Lett. 91 131108
|
[31] |
Ismailov T G and Mehdiyev B H;2006 Physica E 31 72
|
[32] |
Bergues J M, Betancourt-Riera R, Riera R and Marin J L;2000 J. Phys.: Condens. Matter 12 7983
|
[33] |
Bergues J M, Betancourt-Riera R, Marin J L and Riera R 1996 Phys. Low-Dimens. Struct. 7/8 81
|
[34] |
Riera R, Comas F, Trallero-Giner C and Pavlov S T;1988 Phys. Status Solid B 148 533
|
[35] |
Comas F, Trallero Giner C and Perez-Alvarez R;1986 J. Phys. C: Solid State Phys. 19 6479
|
[36] |
Trallero-Giner C, Ruf T and Cardona M;1990 Phys. Rev. B 41 3028
|
[37] |
González de la Cruz G and Trallero-Giner C;1998 Phys. Rev. B 58 9104
|
[38] |
Wang M L, Zhang C X, Wu Z L, Jing X L and Xu H J;2014 Chin. Phys. B 23 067802
|
[39] |
Jiang S M, Wu D J, Wu X W and Liu X J;2014 Chin. Phys. B 23 047807
|
[40] |
Wang M, Tian Y, Zhang J M, Guo C F, Zhang X Z and Liu Q;2014 Chin. Phys. B 23 087803
|
[41] |
Shi L K and Lou W K;2014 Chin. Phys. Lett. 31 067304
|
[42] |
Betancourt-Riera R, Nieto Jalil J M, Riera R, Betancourt-Riera R and Rosas R;2008 J. Phys.: Condens. Matter 20 045203
|
[43] |
Betancourt-Riera R, Betancourt-Riera R, Jordán Hernández R and Riera R 2012 Revista Electrónica Nova Scientia 9 89
|
[44] |
Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|