CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom |
Yang Yu-E (杨玉娥), Xiao Yang (肖杨), Yan Xiao-Hong (颜晓红), Dai Chang-Jie (戴昌杰) |
Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China |
|
|
Abstract We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices.
|
Received: 19 April 2015
Revised: 11 June 2015
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374162 and 51032002) and the Key Project of the National High Technology Research and Development Program of China (Grant No. 2011AA050526). |
Corresponding Authors:
Xiao Yang
E-mail: fryxiao@nuaa.edu.cn
|
Cite this article:
Yang Yu-E (杨玉娥), Xiao Yang (肖杨), Yan Xiao-Hong (颜晓红), Dai Chang-Jie (戴昌杰) Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom 2015 Chin. Phys. B 24 117204
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A;2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Gregorieva I V, Dubonos S V and Firsov A A;2005 Nature 438 197
|
[3] |
Zhang Y, Tan Y W, Stormer H L and Kim P;2005 Nature 438 201
|
[4] |
Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R and Zhang X;2014 Chin. Phys. B 23 117201
|
[5] |
Fang C, Liang T X and Sun L F;2013 Chin. Phys. Lett. 30 047201
|
[6] |
Amara H, Latil S, Meunier V, Lambin P and Charlier J C;2007 Phy. Rev. B 76 115423
|
[7] |
Zheng Y and Ando T;2002 Phys. Rev. B 65 245420
|
[8] |
Du X, Skachko I, Barker A and Andrei E Y;2008 Nat. Nanotech. 3 491
|
[9] |
Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P;2008 Phys. Rev. Lett. 101 096802
|
[10] |
Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y and Qi M;2008 Appl. Phys. Lett. 92 092102
|
[11] |
Ezawa M;2006 Phys. Rev. B 73 045432
|
[12] |
Brey L and Fertig H A;2006 Phys. Rev. B 73 235411
|
[13] |
Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J;2007 Phys. Rev. B 75 165414
|
[14] |
Wang Z F, Li Q X, Zheng H X, Ren H and Su H B;2007 Phys. Rev. B 75 113406
|
[15] |
Zeng H, Zhao J, Wei J W and Hu H F;2011 Eur. Phys. J. B 79 335
|
[16] |
Zheng H X and Duley W;2008 Phys. Rev. B 78 045421
|
[17] |
Song L L, Zheng X H, Wang R L and Zeng Z;2010 J. Phys. Chem. C 114 12145
|
[18] |
Li B, Xu D H and Zeng H;2014 Acta Phys. Sin. 63 117102 (in Chinese)
|
[19] |
Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P;2012 Chin. Phys. B 21 027102
|
[20] |
Zheng X H, Song L L, Wang R N, Hao H, Guo L J and Zeng Z;2010 Appl. Phys. Lett. 97 153129
|
[21] |
Xu J M, Hu X H and Sun L T 2012 Acta Phys. Sin. 61 027104 (in Chinese)
|
[22] |
Zhang H Z, Meng S, Yang H F, Li L, Fu H X, Ma W, Niu C Y, Sun J T and Gu C Z;2015 J. Appl. Phys. 117 113902
|
[23] |
Longo R C, Carrete J and Gallego L J;2011 Phys. Rev. B 83 235415
|
[24] |
Jaiswal N K and Srivastava P;2013 Physica E 54 103
|
[25] |
Rigo V A, Martins T B, Silva A J R, Fazzio A and Miwa R H;2009 Phys. Rev. B 79 075435
|
[26] |
Martins T B, Miwa R H, Silva A J R and Fazzio A;2007 Phys. Rev. Lett. 98 196803
|
[27] |
Caterina C, Deborah P, Arrigo C and Elisa M;2010 J. Chem. Phys. 133 124703
|
[28] |
Gyamfi M, Eelbo T, Wasniowska M and Wiesendanger R;2011 Phys. Rev. B 84 113403
|
[29] |
Eelbo T, Wasniowska M and Thakur P;2013 Phys. Rev. Lett. 110 136804
|
[30] |
Hohenberg P and Kohn W;1964 Phys. Rev. B 136 864
|
[31] |
Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
|
[32] |
Ceperley D M and Alder B J;1980 Phys. Rev. Lett. 45 566
|
[33] |
Keldysh L V 1965 Sov. Phys. JETP 20 1018
|
[34] |
Caroli C, Combescot R, Nozieres P and Saint J D;1971 J. Phys. C 4 916
|
[35] |
Kondo H, Kino H, Nara J, Ozaki T and Ohno T;2006 Phys. Rev. B 73 235323
|
[36] |
http://www.openmx-square.org/
|
[37] |
Guo Y D, Yan X H and Xiao Y;2013 J. Appl. Phys. 113 244302
|
[38] |
Choi H J, Ihm J, Louie S G and Cohen M L;2000 Phys. Rev. Lett. 84 2917
|
[39] |
Fernández-Serra M V, Adessi C and Blase X;2006 Nano. Lett. 6 2674
|
[40] |
Fernández-Serra M V, Adessi C and Blase X;2006 Phys. Rev. Lett. 96 166805
|
[41] |
Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H;2008 Phys. Rev. Lett. 100 206802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|