Abstract The interactions of a colored dynamical network play a great role in its dynamical behaviour and are denoted by outer and inner coupling matrices. In this paper, the outer and inner coupling matrices are assumed to be unknown and need to be identified. A corresponding network estimator is designed for identifying the unknown interactions by adopting proper adaptive laws. Based on the Lyapunov function method and Barbalat’s lemma, the obtained result is analytically proved. A colored network coupled with chaotic Lorenz, Chen, and Lü systems is considered as a numerical example to illustrate the effectiveness of the proposed method.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273), and the Graduate Innovation Fund of Jiangxi Normal University, China (Grant No. YJS2014061).
Synchronization of nanowire-based spin Hall nano-oscillators Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.