Special Issue:
TOPICAL REVIEW — Silicene
|
|
|
Silicene spintronics–A concise review |
Wang Yang-Yang (王洋洋)a c, Quhe Ru-Ge (屈贺如歌)a d e f, Yu Da-Peng (俞大鹏)a b, Lü Jin (吕劲)a b |
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
d Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
e State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
f School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Spintronics involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. The fascinating spin-resolved properties of graphene motivate numerous researchers to study spintronics in graphene and other two-dimensional (2D) materials. Silicene, the silicon analog of graphene, is considered to be a promising material for spintronics. Here, we present a review of theoretical advances with regard to spin-dependent properties, including the electric field-and exchange field-tunable topological properties of silicene and the corresponding spintronic device simulations.
|
Received: 24 March 2015
Revised: 31 May 2015
Accepted manuscript online:
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016 and 11474012) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304). |
Corresponding Authors:
Lü Jin
E-mail: jinglu@pku.edu.cn
|
Cite this article:
Wang Yang-Yang (王洋洋), Quhe Ru-Ge (屈贺如歌), Yu Da-Peng (俞大鹏), Lü Jin (吕劲) Silicene spintronics–A concise review 2015 Chin. Phys. B 24 087201
|
[1] |
Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotech. 3 491
|
[2] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[3] |
Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
|
[4] |
Han W, Pi K, McCreary K M, Li Y, Wong J J I, Swartz A G and Kawakami R K 2010 Phys. Rev. Lett. 105 167202
|
[5] |
Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Güntherodt G, Beschoten B and Özyilmaz B 2011 Phys. Rev. Lett. 107 047206
|
[6] |
Pesin D and MacDonald A H 2012 Nat. Mater. 11 409
|
[7] |
Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotech. 9 794
|
[8] |
Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J and Chen Z 2013 Nano Lett. 13 5177
|
[9] |
Wang W H, Pi K, Li Y, Chiang Y F, Wei P, Shi J and Kawakami R K 2008 Phys. Rev. B 77 020402
|
[10] |
Kim W Y and Kim K S 2008 Nat. Nanotech. 3 408
|
[11] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[12] |
Ozaki T, Nishio K, Weng H and Kino H 2010 Phys. Rev. B 81 075422
|
[13] |
Lakshmi S, Roche S and Cuniberti G 2009 Phys. Rev. B 80 193404
|
[14] |
Kang J, Wu F and Li J 2011 Appl. Phys. Lett. 98 083109
|
[15] |
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
|
[16] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[17] |
Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
|
[18] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[19] |
Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
|
[20] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[21] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[22] |
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2013 Adv. Mater. 26 2096
|
[23] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
|
[24] |
Appelbaum I, Huang B and Monsma D J 2007 Nature 447 295
|
[25] |
Huang B, Monsma D J and Appelbaum I 2007 Phys. Rev. Lett. 99 177209
|
[26] |
Huang B, Jang H J and Appelbaum I 2008 Appl. Phys. Lett. 93 162508
|
[27] |
Sanvito S 2011 Chem. Soc. Rev. 40 3336
|
[28] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[29] |
Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
|
[30] |
Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z and Lu J 2012 Nano 07 1250037
|
[31] |
Ding Y and Wang Y 2013 Appl. Phys. Lett. 102 143115
|
[32] |
Yang X F, Liu Y S, Feng J F, Wang X F, Zhang C W and Chi F 2014 J. Appl. Phys. 116 124312
|
[33] |
Zhang D, Long M, Zhang X, Cao C, Xu H, Li M and Chan K 2014 Chem. Phys. Lett. 616–617 178
|
[34] |
Deng X, Zhang Z, Tang G, Fan Z, Zhu H and Yang C 2014 Sci. Rep. 4 4038
|
[35] |
Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
|
[36] |
Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
|
[37] |
Pan F, Quhe R, Ge Q, Zheng J, Ni Z, Wang Y, Gao Z, Wang L and Lu J 2014 Physica E 56 43
|
[38] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[39] |
Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
|
[40] |
Tahir M and Schwingenschlögl U 2013 Sci. Rep. 3 1075
|
[41] |
Tahir M, Manchon A, Sabeeh K and Schwingenschlögl U 2013 Appl. Phys. Lett. 102 162412
|
[42] |
Zhang X L, Liu L F and Liu W M 2013 Sci. Rep. 3 2908
|
[43] |
Cao G, Zhang Y and Cao J 2015 Phys. Lett. A 379 1475
|
[44] |
Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
|
[45] |
Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|