Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097101    DOI: 10.1088/1674-1056/24/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Defect stability in thorium monocarbide: An ab initio study

Wang Chang-Ying (王昌英)a b, Han Han (韩晗)a c, Shao Kuan (邵宽)a b, Cheng Cheng (程诚)a c, Huai Ping (怀平)a c
a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China;
c Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC.
Keywords:  thorium monocarbide      ab initio study      bulk properties      defects  
Received:  06 January 2015      Revised:  03 April 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.J- (Point defects and defect clusters)  
  61.72.jj (Interstitials)  
Fund: Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).
Corresponding Authors:  Cheng Cheng, Huai Ping     E-mail:  chengcheng@sinap.ac.cn;huaiping@sinap.ac.cn

Cite this article: 

Wang Chang-Ying (王昌英), Han Han (韩晗), Shao Kuan (邵宽), Cheng Cheng (程诚), Huai Ping (怀平) Defect stability in thorium monocarbide: An ab initio study 2015 Chin. Phys. B 24 097101

[1] Li Q, Yang J S, Huang D H, Cao Q L and Wang F H 2014 Chin. Phys. B 23 017101
[2] Li P, Jia T T, Gao T and Li G 2012 Chin. Phys. B 21 043301
[3] Li L, Wang B T and Zhang P 2015 Chin. Phys. Lett. 32 037102
[4] Sengupta A K, Agarwal R and Kamath S H 2012 in Comprehensive Nuclear Materials (ed. R. J. M. Konings) (Oxford: Elsevier) p. 55
[5] Lee W E, Gilbert M, Murphy S T and Grime R W 2013 J. Am. Ceram. Soc. 96 2005
[6] Shi H, Zhang P, Li S S, Sun B and Wang B 2009 Phys. Lett. A 373 3577
[7] Shi H, Zhang P, Li S S, Wang B and Sun B 2010 J. Nucl. Mater. 396 218
[8] Freyss M 2010 Phys. Rev. B 81 014101
[9] Ducher R, Dubourg R, Barrachin M and Pasturel A 2011 Phys. Rev. B 83 104107
[10] Sahoo B D, Joshi K D and Gupta S C 2013 J. Nucl. Mater. 437 81
[11] Carvajal Nuñez U, Martel U L, Prieur D, Lopez Honorato E, Eloirdi R, Farnan I, Vitova T and Somers J 2013 Inorg. Chem. 52 11669
[12] Berthinier C, Rado C, Dugne O, Cabie M, Chatillon C, Boichot R and Blanquet E 2013 J. Nucl. Mater. 432 505
[13] Petti D, Crawford D C and Chauvin N 2009 MRS Bulletin 34 40
[14] Crawford D C, Porter D L and Hayes S L 2007 J. Nucl. Mater. 371 202
[15] Everett III J L and Kohler E J 1978 Ann. Nucl. Energy 5 321
[16] Kleykamp H 1992 Thorium Carbides, Gmelin Handbook of Inorganic and Organometallic Chemistry, Vol. C6 (Berlin: Springer)
[17] Kempter C P and Krikorian N H 1962 J. Less Common Met. 4 244
[18] Satow T 1967 J. Nucl. Mater. 21 255
[19] Gerward L, Olsen J S, Benedict U, Itie J P and Spirlet J C 1986 J. Appl. Crystallogr. 19 308
[20] Yamawaki M, Koyama T and Takahashi Y 1989 J. Nucl. Mater. 167 113
[21] Yamawaki M 1991 Solid State Ionics 49 217
[22] Shein I R, Shein K I and Ivanovskii A L 2006 J. Nucl. Mater. 353 19
[23] Shein I R, Shein K I, Shveikin G P and Ivanovskii A L 2006 Dokl. Phys. Chem. 407 106
[24] Shein I R and Ivanovskii A L 2010 Solid State Sci. 12 1580
[25] Shein I R and Ivanovskii A L 2010 Phys. Solid State 52 2039
[26] Das T, Deb S and Mookerjee A 2005 Physica B 367 6
[27] Lim I S and Scuseria G E 2008 Chem. Phys. Lett. 460 137
[28] Aydin S, Tatar A and Ciftci Y O 2012 J. Nucl. Mater. 429 55
[29] Pérez D, Jaroszewicz S, Llois A M and Mosca H O 2013 J. Nucl. Mater. 437 135
[30] Matzke H 1984 Solid State Ionics 12 25
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Benz R and Naoumidis A 1987 Thorium Compounds with Nitrogen, Gmelin Handbook of Inorganic Chemistry, Vol. C3 (Berlin: Springer)
[37] Lightstone J B and Libowitz G G 1969 J. Phys. Chem. Solids 30 1025
[38] Moisy-Maurice V, de Novion C H and Convert P 1980 Acta Crystallogr. A 36 916
[39] Murch G E and Thorn R J 1979 J. Nucl. Mater. 82 430
[40] Manara D, De Bruycke F, Sengupta A K, Agarwal R and Kamath H S 2012 in Comprehensive Nuclear Materials (ed. J. M. K. Rudy) (Oxford: Elsevier), p. 87
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[5] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[6] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[9] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[12] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[13] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[14] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[15] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
No Suggested Reading articles found!