Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097801    DOI: 10.1088/1674-1056/24/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation

Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬)
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  A space monocrystalline silicon (c-Si) solar cell under low-energy (< 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry (PCR). Monte Carlo simulation (MCS) was employed to characterize the effect of different energy electron irradiation on the c-Si solar cell. The carrier transport parameters (carrier lifetime, diffusion coefficient, and surface recombination velocities) were obtained by best fitting the experimental results with a theoretical one-dimensional two-layer PCR model. The results showed that the increase of the irradiation electron energy caused a large reduction of the carrier lifetime and diffusion length. Furthermore, the rear surface recombination velocity of the Si:p base of the solar cell at the irradiation electron energy of 1 MeV was dramatically enhanced due to 1 MeV electron passing through the whole cell. Short-circuit current (Isc) degradation evaluated by PCR was in good agreement with that obtained by electrical measurement.
Keywords:  photocarrier radiometry      electron irradiation      silicon solar cell  
Received:  12 February 2015      Revised:  19 March 2015      Accepted manuscript online: 
PACS:  78.56.Cd (Photocarrier radiometry)  
  88.40.jj (Silicon solar cells)  
Corresponding Authors:  Wang Yang     E-mail:  ljywlj@hit.edu.cn

Cite this article: 

Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬) Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation 2015 Chin. Phys. B 24 097801

[1] Iles P A 2001 Sol. Energ. Mat. Sol. C 68 1
[2] Bourgoin J C and Angelis N 2001 Sol. Energ. Mat. Sol. C 66 467
[3] Angelis N D, Bourgoin J C, Takamoto T, Khan A and Yamaguchi M 2001 Sol. Energ. Mat. Sol. C 66 495
[4] Alurraldea M, Tamasi M J L, Bruno C J, Martínez M G, Plá J, Vázquez J F, Durán J, Schuff J, Burlon A A,Stoliar P and Kreiner A J 2004 Sol. Energ. Mat. Sol. C 82 531
[5] Danilchenko B, Budnyk A, Shpinar L, Poplavskyy D, Zelensky S E, Barnham K W J and Ekins-Daukes N J 2008 Sol. Energ. Mat. Sol. C 92 1336
[6] Stassinopoulos E G and Raymond J P 1988 Proc. IEEE 76 1423
[7] Zhang X R, Li B C and Liu X M 2008 Acta Phys. Sin. 57 7310 (in Chinese)
[8] Othonos A, Christofides C and Mandelis A 1996 Appl. Phys. Lett. 69 821
[9] Mandelis A, Batista J and Shaughnessy D 2003 Phys. Rev. B 67 205208
[10] Batista J, Mandelis A and Shaughnessy D 2003 Appl. Phys. Lett. 82 4077
[11] Melnikov A, Mandelis A, Tolev J and Lioudakis E 2010 J. Phys.: Conf. Ser. 214 012111
[12] Liu J Y, Melnikov A and Mandelis A 2013 Phys. Status. Solidi A 210 2135
[13] Liu J Y, Qin L, Gong J L, Wang Y and Mandelis A 2014 J. Infrared Millim. Waves 33 248 (in Chinese)
[14] Mandelis A 1989 J. Appl. Phys. 66 5572
[15] Liu J Y, Mandelis A, Qin L, Wang Y, Song P and Melnikov A 2015 Submitted to Solar Energy Materials and Solar Cells
[16] Koyama H 1980 J. Appl. Phys. 51 2228
[17] Nelson J 2003 The Physics of Solar Cells (London: Imperial College Press) p. 150
[18] Green M A 2008 Sol. Energ. Mat. Sol. C 92 1305
[1] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[2] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[3] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[4] Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction
Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉). Chin. Phys. B, 2019, 28(12): 128503.
[5] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[6] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[7] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[8] Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost
Haibin Huang(黄海宾), Gangyu Tian(田罡煜), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Wolfgang R. Fahrner, Wenbin Zhang(张闻斌), Xingbing Li(李杏兵), Wenhao Chen(陈文浩), Renzhong Liu(刘仁中). Chin. Phys. B, 2018, 27(3): 038502.
[9] A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation
Guo-Bao Feng(封国宝), Wan-Zhao Cui(崔万照), Na Zhang(张娜), Meng Cao(曹猛), Chun-Liang Liu(刘纯亮). Chin. Phys. B, 2017, 26(9): 097901.
[10] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[11] Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells
Ming Lu(鲁明), Jing Xu(徐晶), Jian-Wei Huang(黄建微). Chin. Phys. B, 2016, 25(9): 098402.
[12] Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass
Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟). Chin. Phys. B, 2015, 24(7): 076102.
[13] Characteristics of charge and discharge of PMMA samples due to electron irradiation
Feng Guo-Bao (封国宝), Wang Fang (王芳), Hu Tian-Cun (胡天存), Cao Meng (曹猛). Chin. Phys. B, 2015, 24(11): 117901.
[14] Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
Yang Jian-Qun (杨剑群), Li Xing-Ji (李兴冀), Liu Chao-Ming (刘超铭), Ma Guo-Liang (马国亮), Gao Feng (高峰). Chin. Phys. B, 2015, 24(11): 116103.
[15] Combined frequency- and time-domain photocarrier radiometry characterization of ion-implanted and thermally annealed silicon wafers
Ren Sheng-Dong (任胜东), Li Bin-Cheng (李斌成), Gao Li-Feng (高丽峰), Wang Qian (王谦). Chin. Phys. B, 2013, 22(5): 057202.
No Suggested Reading articles found!