Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128503    DOI: 10.1088/1674-1056/ab5212
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction

Haibin Huang(黄海宾)1, Lang Zhou(周浪)1, Jiren Yuan(袁吉仁)1,2, Zhijue Quan(全知觉)3
1 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China;
2 Department of Physics, Nanchang University, Nanchang 330031, China;
3 National Institute of LED on Si Substrate, Nanchang University, Nanchang 330096, China
Abstract  In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p-n structure (HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT (heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD (heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells. The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 mA/cm2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to (1) decrease of optical absorption loss of a-Si:H and (2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide (TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.
Keywords:  silicon solar cell      a-Si:H/c-Si heterojunction      short-circuit current      local junction  
Received:  08 September 2019      Revised:  13 October 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  88.30.gg (Design and simulation)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500403), the National Natural Science Foundation of China (Grant Nos. 11964018, 61741404, and 61464007), and the Natural Science Foundation of Jiangxi Province of China (Grant No. 20181BAB202027).
Corresponding Authors:  Lang Zhou, Jiren Yuan     E-mail:  lzhou@ncu.edu.cn;yuanjiren@ncu.edu.cn

Cite this article: 

Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉) Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction 2019 Chin. Phys. B 28 128503

[1] Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H and Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518
[2] Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S and Oota O 2000 Prog. Photovolt: Res. Appl. 8 503
[3] Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, Sakata H, Maruyama E and Tanaka M 2009 Sol. Energy Mater. Sol. Cells 93 670
[4] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovolt. 4 96
[5] Yao Y, Xu X, Zhang X, Zhou H, Gu X and Xiao S 2018 Mater. Sci. Semicond. Process. 77 16
[6] Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F and Liu Z 2019 Appl. Surf. Sci. 475 504
[7] Zhao L, Wang G, Diao H and Wang W 2018 J. Phys. D: Appl. Phys. 51 045501
[8] Bashiri H, Karami M A and Nejad S M 2017 Mater. Res. Express 4 126308
[9] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J and Ho-Baillie1 A W Y 2019 Prog. Photovolt. Res. Appl. 27 3
[10] Bashiri H, Karami M A and Mohammadnejad S 2018 Superlattices Microstruct. 120 327
[11] Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Seif J P, Wolf S D and Ballif C 2012 IEEE J. Photovolt. 2 7
[12] Qiao Z, Ji J, Zhang Y, Liu H and Li T 2017 Chin. Phys. B 26 068802
[13] Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F and Rau U 2013 Jpn. J. Appl. Phys. 52 122304
[14] Banerjee C, Sritharathikhun J, Yamada A and Konagai M 2008 J. Phys. D: Appl. Phys. 41 185107
[15] Ogawa S, Yoshida N, Itoh T and Nonomura S 2007 Jpn. J. Appl. Phys. 46 518
[16] Yang X, Song J, Yang J, Bai J, Dang W and Chen J 2018 J. Phys. D: Appl. Phys. 51 305501
[17] Lu M 2007 Appl. Phys. Lett. 91 063507
[18] Mingirulli N, Haschke J, Gogolin R, Ferre R, Schulze T F, Düsterhöft J, Harder N P, Korte L, Brendel R and Rech B 2011 Phys. Stat. Solidi-RRL 5 159
[19] Lu M, Das U, Bowden S, Hegedus S and Birkmire R 2011 Prog. Photovol.: Res. Appl. 19 326
[20] Yoshikawa K, Kawasaki H, Yoshida W et al. 2017 Nat. Energy 2 17032
[21] Yoshikawa K, Yoshida W, Irie T et al. 2017 Sol. Energy Mater. Sol. Cells 173 37
[22] Huang H, Tian G, Zhou L, Yuan J, Fahrner W R, Zhang W, Li X, Chen W and Liu R 2018 Chin. Phys. B 27 038502
[23] Huang H, Zhou L, Yuan J, Gao C and Yue Z 2018 Patent CN108336157A, July 27, 2018
[24] Yuan J, Zhou L, Huang H, Gao C and Yue Z 2018 Patent CN108461569A, August 28, 2018
[25] ATLAS User's Manual–device Simulation Software 2016 SILVACO Santa Clara CA
[26] Yuan J, Shen H, Lu L, Wu T and He X 2010 Optoelectron. Adv. Mater.-Rapid Commun. 4 1211
[27] Hernandez-Como N and Morales-Acevedo A 2010 Sol. Energy Mater. Sol. Cells 94 62
[28] Adachi D, Hernández J L and Yamamoto K 2015 Appl. Phys. Lett. 107 233506
[29] Masuko K, Shigematsu M, Hashiguchi T et al. 2014 IEEE J. Photovolt 4 1433
[30] Dwivedi N, Kumar S, Bisht A, Patel K and Sudhakar S 2013 Sol. Energy 88 31
[31] Yao Y, Xu X, Zhang X, Zhou H, Gu X and Xiao S 2018 Mater. Sci. Semicond. Process 77 16
[1] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[2] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[3] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[4] Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost
Haibin Huang(黄海宾), Gangyu Tian(田罡煜), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Wolfgang R. Fahrner, Wenbin Zhang(张闻斌), Xingbing Li(李杏兵), Wenhao Chen(陈文浩), Renzhong Liu(刘仁中). Chin. Phys. B, 2018, 27(3): 038502.
[5] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[6] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬). Chin. Phys. B, 2015, 24(9): 097801.
[7] Detailed balance limit efficiency of silicon intermediate band solar cells
Cao Quan(曹权), Ma Zhi-Hua(马志华), Xue Chun-Lai(薛春来),Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(9): 097103.
[8] Hydrogen passivation of multi-crystalline silicon solar cells
Hu Zhi-Hua (胡志华), Liao Xian-Bo (廖显伯), Liu Zu-Ming (刘祖明), Xia Chao-Feng (夏朝凤), Chen Ting-Jin (陈庭金). Chin. Phys. B, 2003, 12(1): 112-115.
No Suggested Reading articles found!