Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058801    DOI: 10.1088/1674-1056/27/5/058801

Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells

Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远)
College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

A unique method is proposed to encapsulate solar cells and improve their power conversion efficiency by using a millimeter-sized cylindrical lens array concentrator. Millimeter-sized epoxy resin polymer (ERP) cylindrical lens array concentrators are fabricated by the soft imprint technique based on polydimethylsiloxane stamps. The photovoltaic measurements show that millimeter-sized ERP cylindrical lens array concentrators can considerably improve the power conversion efficiency of silicon solar cells. The validity of the proposed method is proved by the coupled optical and electrical simulations. The designed solar cell devices with the advantages of high-efficiency and convenient cleaning are very useful in practical applications.

Keywords:  millimeter-sized cylindrical array concentrator      silicon solar cells      high-efficiency      soft imprint method  
Received:  06 February 2018      Accepted manuscript online: 
PACS:  88.40.hj (Efficiency and performance of solar cells) (Concentrating collectors)  
  42.79.Ek (Solar collectors and concentrators)  

Project supported by the Natural National Science Foundation of China (Grant No.61377021).

Corresponding Authors:  Yao-Ju Zhang, Chao-Long Fang     E-mail:;

Cite this article: 

Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远) Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells 2018 Chin. Phys. B 27 058801

[1] Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O and Zaidi S H 2012 Renew. Sust. Energy Rev. 16 5834
[2] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovolt. Res. Appl. 23 1
[3] Kannan N and Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092
[4] Mohammed T I, Koh S C L, Reaney I M, Acquaye A, Schileo G, Mustapha K B and Greenough R 2017 Renew. Sust. Energy Rev. 80 1321
[5] Chen W H and Hong C N 2016 Sol. Energy Mater. Sol. Cells 157 48
[6] Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre J F, Chaumartin A, Fave A and Lemiti M 2006 Sol. Energy Mater. Sol. Cells 90 2319
[7] Haase C and Stiebig H 2007 Appl. Phys. Lett. 91 061116
[8] Jiang Y, Shen H L, Pu T, Zheng C F, Tang Q T, Gao K, Wu J, Rui C B, Li Y F and Liu Y W 2017 Sol. Energy 142 91
[9] Stapf A, Honeit F, Gondek C and Kroke E 2017 Sol. Energy Mater. Sol. Cells 159 112
[10] Phillips B M, Jiang P and Jiang B 2011 Appl. Phys. Lett. 99 191103
[11] Chong T K, Wilson J, Mokkapati S and Catchpole K R 2012 J. Optics 14 024012
[12] Esteban R, Laroche M and Greffet J J 2010 Appl. Phys. Lett. 97 221111
[13] Jia Z H, Cheng Q, Song J, Si M T and Luo Z X 2016 Opt. Commun. 376 14
[14] Kanamori Y, Hane K, Sai H and Yugami H 2001 Appl. Phys. Lett. 78 142
[15] Huang B R, Yang Y K, Lin T C and Yang W L 2012 Sol. Energy Mater. Sol. Cells 98 357
[16] Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T and Lee J H 2010 Opt. Express 18 A286
[17] Michael D K, Shannon W B, Jan A P, Daniel B T E, Morgan C P, Emily L W, Joshua M S, Ryan M B, Nathan S L and Harry A A 2010 Nat. Mater. 9 239
[18] Rahul D, Marko M, Rodrigo N, Sujay P, Alberto S and Dietmar K 2009 Opt. Express 17 23058
[19] Xi Z Q, Yang D R, Dan W, Jun C, Lia X H and Que D L 2004 Renew. Energy 29 2101
[20] Zhong S, Huang Z, Lin X, Zeng Y, Ma Y and Shen W 2015 Adv. Mater. 27 555
[21] Goetzberger A, Knobloch J and Voss B 1998 Crystalline Silicon Solar Cells (Chichester:John Wiley & Sons)
[22] Poulek V, Strebkov D S, Persic I S and Libra M 2012 Sol. Energy 86 3103
[23] Pern F J and Glick S H 1997 AIP Conf. Proc. 394 811
[24] Tao W and Du Y 2015 Sol. Energy 122 718
[25] Dubey R S, Jhansirani K and Singh S 2017 Results Phys. 7 77
[26] Leem J W, Guan X Y, Choi M and Yu J S 2015 Sol. Energy Mater. Sol. Cells 134 45
[27] Amalathas A P and Alkaisi M M 2017 Mater. Sci. Semicond. Proc. 57 54
[28] Raut H K, Nair A S, Dinachali S S, Ganesh V A, Walsh T M and Ramakrishna S 2013 Sol. Energy Mater. Sol. Cells 111 9
[29] Sánchez-Illescas P J, Carpena P, Bernaola-Galván P, Sidrach-De-Cardona M, Coronado A V and álvarez J L 2008 Sol. Energy Mater. Sol. Cells 92 323
[30] Ghazi S, Sayigh A and Ip K 2014 Renew. Sust. Energy Rev. 33 742
[31] Ha S H, Yu H W, Jang N S, Kim J H, Kim S H and Kim J M 2016 Sol. Energy Mater. Sol. Cells 155 362
[32] Fan H B and Yuen M M F 2007 Polymer 48 2174
[33] Nogi M, Handa K, Nakagaito A N and Yano H 2005 Appl. Phys. Lett. 87 243110
[34] Lin J, Chen M, Ke Y, Ren C, Xu Z, Zhang Y and Fang C 2018 Chin. Phys. B 27 018802
[35] Tseng J K, Chen Y J, Pan C T, Wu T T and Chung M H 2011 Sol. Energy 85 2167
[36] 2017 PVLighthouse Web
[37] Zhang Y J, Zheng J, Zhao X S, Ruan X K, Cui G H, Zhu H Y and Dai Y X 2018 Opt. Commun. 410 369
[38] Maryasin V, Bucci D, Rafhay Q, Panicco F, Michallon J and Ccachopo A K 2017 Sol. Energy Mater. Sol. Cells 172 314
[39] Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press)
[40] Price J S, Sheng X, Meulblok B M, Rogers J A and Giebink N C 2015 Nat. Commun. 6 6223
[41] Miller O D, Yablonovitch E and Kurtz S R 2012 IEEE J. Photovolt. 2 303
[42] Tiedje T, Yablonovitch E, Cody G D and Brooks B G 1984 IEEE T. Electron Dev. ED-31 711
[43] Yablonovitch E and Cody G D 1982 IEEE T. Electron Dev. ED-29 300
[44] Paternoster G, Zanuccoli M, Bellutti P, Ferrario L, Ficorella F, Fiegna C, Magnone P, Mattedi F and Sangiorgi E 2015 Sol. Energy Mater. Sol. Cells 134 40
[1] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[2] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[3] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[4] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
[5] Hydrogen passivation of multi-crystalline silicon solar cells
Hu Zhi-Hua (胡志华), Liao Xian-Bo (廖显伯), Liu Zu-Ming (刘祖明), Xia Chao-Feng (夏朝凤), Chen Ting-Jin (陈庭金). Chin. Phys. B, 2003, 12(1): 112-115.
No Suggested Reading articles found!