INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells |
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远) |
College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China |
|
|
Abstract A unique method is proposed to encapsulate solar cells and improve their power conversion efficiency by using a millimeter-sized cylindrical lens array concentrator. Millimeter-sized epoxy resin polymer (ERP) cylindrical lens array concentrators are fabricated by the soft imprint technique based on polydimethylsiloxane stamps. The photovoltaic measurements show that millimeter-sized ERP cylindrical lens array concentrators can considerably improve the power conversion efficiency of silicon solar cells. The validity of the proposed method is proved by the coupled optical and electrical simulations. The designed solar cell devices with the advantages of high-efficiency and convenient cleaning are very useful in practical applications.
|
Received: 06 February 2018
Accepted manuscript online:
|
PACS:
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.fr
|
(Concentrating collectors)
|
|
42.79.Ek
|
(Solar collectors and concentrators)
|
|
Fund: Project supported by the Natural National Science Foundation of China (Grant No.61377021). |
Corresponding Authors:
Yao-Ju Zhang, Chao-Long Fang
E-mail: zhangyj@wzu.edu.cn;fansy21@163.com
|
Cite this article:
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远) Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells 2018 Chin. Phys. B 27 058801
|
[1] |
Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O and Zaidi S H 2012 Renew. Sust. Energy Rev. 16 5834
|
[2] |
Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovolt. Res. Appl. 23 1
|
[3] |
Kannan N and Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092
|
[4] |
Mohammed T I, Koh S C L, Reaney I M, Acquaye A, Schileo G, Mustapha K B and Greenough R 2017 Renew. Sust. Energy Rev. 80 1321
|
[5] |
Chen W H and Hong C N 2016 Sol. Energy Mater. Sol. Cells 157 48
|
[6] |
Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre J F, Chaumartin A, Fave A and Lemiti M 2006 Sol. Energy Mater. Sol. Cells 90 2319
|
[7] |
Haase C and Stiebig H 2007 Appl. Phys. Lett. 91 061116
|
[8] |
Jiang Y, Shen H L, Pu T, Zheng C F, Tang Q T, Gao K, Wu J, Rui C B, Li Y F and Liu Y W 2017 Sol. Energy 142 91
|
[9] |
Stapf A, Honeit F, Gondek C and Kroke E 2017 Sol. Energy Mater. Sol. Cells 159 112
|
[10] |
Phillips B M, Jiang P and Jiang B 2011 Appl. Phys. Lett. 99 191103
|
[11] |
Chong T K, Wilson J, Mokkapati S and Catchpole K R 2012 J. Optics 14 024012
|
[12] |
Esteban R, Laroche M and Greffet J J 2010 Appl. Phys. Lett. 97 221111
|
[13] |
Jia Z H, Cheng Q, Song J, Si M T and Luo Z X 2016 Opt. Commun. 376 14
|
[14] |
Kanamori Y, Hane K, Sai H and Yugami H 2001 Appl. Phys. Lett. 78 142
|
[15] |
Huang B R, Yang Y K, Lin T C and Yang W L 2012 Sol. Energy Mater. Sol. Cells 98 357
|
[16] |
Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T and Lee J H 2010 Opt. Express 18 A286
|
[17] |
Michael D K, Shannon W B, Jan A P, Daniel B T E, Morgan C P, Emily L W, Joshua M S, Ryan M B, Nathan S L and Harry A A 2010 Nat. Mater. 9 239
|
[18] |
Rahul D, Marko M, Rodrigo N, Sujay P, Alberto S and Dietmar K 2009 Opt. Express 17 23058
|
[19] |
Xi Z Q, Yang D R, Dan W, Jun C, Lia X H and Que D L 2004 Renew. Energy 29 2101
|
[20] |
Zhong S, Huang Z, Lin X, Zeng Y, Ma Y and Shen W 2015 Adv. Mater. 27 555
|
[21] |
Goetzberger A, Knobloch J and Voss B 1998 Crystalline Silicon Solar Cells (Chichester:John Wiley & Sons)
|
[22] |
Poulek V, Strebkov D S, Persic I S and Libra M 2012 Sol. Energy 86 3103
|
[23] |
Pern F J and Glick S H 1997 AIP Conf. Proc. 394 811
|
[24] |
Tao W and Du Y 2015 Sol. Energy 122 718
|
[25] |
Dubey R S, Jhansirani K and Singh S 2017 Results Phys. 7 77
|
[26] |
Leem J W, Guan X Y, Choi M and Yu J S 2015 Sol. Energy Mater. Sol. Cells 134 45
|
[27] |
Amalathas A P and Alkaisi M M 2017 Mater. Sci. Semicond. Proc. 57 54
|
[28] |
Raut H K, Nair A S, Dinachali S S, Ganesh V A, Walsh T M and Ramakrishna S 2013 Sol. Energy Mater. Sol. Cells 111 9
|
[29] |
Sánchez-Illescas P J, Carpena P, Bernaola-Galván P, Sidrach-De-Cardona M, Coronado A V and álvarez J L 2008 Sol. Energy Mater. Sol. Cells 92 323
|
[30] |
Ghazi S, Sayigh A and Ip K 2014 Renew. Sust. Energy Rev. 33 742
|
[31] |
Ha S H, Yu H W, Jang N S, Kim J H, Kim S H and Kim J M 2016 Sol. Energy Mater. Sol. Cells 155 362
|
[32] |
Fan H B and Yuen M M F 2007 Polymer 48 2174
|
[33] |
Nogi M, Handa K, Nakagaito A N and Yano H 2005 Appl. Phys. Lett. 87 243110
|
[34] |
Lin J, Chen M, Ke Y, Ren C, Xu Z, Zhang Y and Fang C 2018 Chin. Phys. B 27 018802
|
[35] |
Tseng J K, Chen Y J, Pan C T, Wu T T and Chung M H 2011 Sol. Energy 85 2167
|
[36] |
2017 PVLighthouse Webhttps://www2.pvlighthouse.com.au/Resources/Photovoltaic%20materials
|
[37] |
Zhang Y J, Zheng J, Zhao X S, Ruan X K, Cui G H, Zhu H Y and Dai Y X 2018 Opt. Commun. 410 369
|
[38] |
Maryasin V, Bucci D, Rafhay Q, Panicco F, Michallon J and Ccachopo A K 2017 Sol. Energy Mater. Sol. Cells 172 314
|
[39] |
Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press)
|
[40] |
Price J S, Sheng X, Meulblok B M, Rogers J A and Giebink N C 2015 Nat. Commun. 6 6223
|
[41] |
Miller O D, Yablonovitch E and Kurtz S R 2012 IEEE J. Photovolt. 2 303
|
[42] |
Tiedje T, Yablonovitch E, Cody G D and Brooks B G 1984 IEEE T. Electron Dev. ED-31 711
|
[43] |
Yablonovitch E and Cody G D 1982 IEEE T. Electron Dev. ED-29 300
|
[44] |
Paternoster G, Zanuccoli M, Bellutti P, Ferrario L, Ficorella F, Fiegna C, Magnone P, Mattedi F and Sangiorgi E 2015 Sol. Energy Mater. Sol. Cells 134 40
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|