Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038502    DOI: 10.1088/1674-1056/27/3/038502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost

Haibin Huang(黄海宾)1, Gangyu Tian(田罡煜)1, Lang Zhou(周浪)1, Jiren Yuan(袁吉仁)1,2, Wolfgang R. Fahrner1, Wenbin Zhang(张闻斌)3, Xingbing Li(李杏兵)3, Wenhao Chen(陈文浩)4, Renzhong Liu(刘仁中)4
1 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China;
2 Department of Physics, Nanchang University, Nanchang 330031, China;
3 GCL System Integration Technology Co. Ltd., Shanghai 201700, China;
4 Hareon Solar Co. Ltd., Taicang 215400, China
Abstract  

A novel structure of Ag grid/SiNx/n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current (Jsc), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover, real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the Jsc of 41.7 mA/cm2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm2. We conclude that the configuration of the Ag grid/SiNx/n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.

Keywords:  silicon solar cell      a-Si:H/c-Si heterojunction      short-circuit current  
Received:  06 December 2017      Revised:  25 December 2017      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  88.30.gg (Design and simulation)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the Jiangxi Provincial Key Research and Development Foundation, China (Grant No. 2016BBH80043), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. NJ20160032), and the National Natural Science Foundation of China (Grant Nos. 61741404, 61464007, and 51561022).

Corresponding Authors:  Lang Zhou, Jiren Yuan     E-mail:  lzhou@ncu.edu.cn;yuanjiren@ncu.edu.cn

Cite this article: 

Haibin Huang(黄海宾), Gangyu Tian(田罡煜), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Wolfgang R. Fahrner, Wenbin Zhang(张闻斌), Xingbing Li(李杏兵), Wenhao Chen(陈文浩), Renzhong Liu(刘仁中) Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost 2018 Chin. Phys. B 27 038502

[1] Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H and Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518
[2] Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S and Oota O 2000 Prog. Photovolt:Res. Appl. 8 503
[3] Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, Sakata H, Maruyama E and Tanaka M 2009 Sol. Energy Mater. Sol. Cells 93 670
[4] Datta A, Rahmouni M, Nath M, Boubekri R, Cabarrocas P R and Chatterjee P 2010 Sol. Energy Mater. Sol. Cells 94 1457
[5] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovolt. 4 96
[6] Adachi D, Hernandez J L and Yamamoto K 2015 Appl. Phys. Lett. 107 233506
[7] Gu J H, Si J L, Wang J X, Feng Y Y, Gao X Y and Lu J X 2015 Chin. Phys. B 24 117703
[8] Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R and Liu Z 2017 Front. Energy 11 78
[9] Bashiri H, Karami M A and Mohammadnejad S 2017 Chin. Phys. B 26 108801
[10] Liu W, Zhang L, Cong S, Chen R, Wu Z, Meng F, Shi Q and Liu Z 2018 Sol. Energy Mate. Sol. Cells 174 233
[11] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 17032
[12] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37
[13] Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Seif J P, Wolf S D and Ballif C 2012 IEEE J. Photovolt. 2 7
[14] He Y, Huang H, Zhou L, Yue Z, Yuan J, Zhou N and Gao C 2017 Mater. Sci. Semicond. Process. 6 1
[15] Yuan J, Shen H, Lu L, Wu T and He X 2010 Optoelectron. Adv. Mater. Rapid Commun. 4 1211
[16] Kirner S, Mazzarella L, Korte L, Stannowski B, Rech B and Schlatmann R 2015 IEEE J. Photovolt. 5 1601
[17] Liu Y, Sun Y and Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[18] Zhu H, Kalkan A K, Hou J and Fonash S J 1999 AIP Conf. Proc. 462 309
[19] Hernández-Como N and Morales-Acevedo A 2010 Sol. Energy Mater. Sol. Cells 94 62
[20] Tauchi M, Terakawa A, Maruyama E and Tanaka M 2005 Prog. Photovol.:Res. Appl. 13 481
[21] Wang C Y and Tao Y 2003 Glass Enamel 31 59
[1] Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction
Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉). Chin. Phys. B, 2019, 28(12): 128503.
[2] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[3] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[4] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[5] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[6] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬). Chin. Phys. B, 2015, 24(9): 097801.
[7] Detailed balance limit efficiency of silicon intermediate band solar cells
Cao Quan(曹权), Ma Zhi-Hua(马志华), Xue Chun-Lai(薛春来),Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(9): 097103.
[8] Hydrogen passivation of multi-crystalline silicon solar cells
Hu Zhi-Hua (胡志华), Liao Xian-Bo (廖显伯), Liu Zu-Ming (刘祖明), Xia Chao-Feng (夏朝凤), Chen Ting-Jin (陈庭金). Chin. Phys. B, 2003, 12(1): 112-115.
No Suggested Reading articles found!