Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068801    DOI: 10.1088/1674-1056/27/6/068801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Detection of finger interruptions in silicon solar cells using photoluminescence imaging

Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101407, China
Abstract  

Since publication, it has been brought to the attention of the Editorial Office of Chinese Physics B that parts of this paper showed strong similarities to the following article (including one equation, some analyses, the motivation and the conclusion) without citation: “Detection of Finger Interruptions in Silicon Solar Cells Using Line Scan Photoluminescence Imaging,” IEEE Journal of Photovoltaics, 2017, vol. 7, No. 6, pp. 1496-1502. Following our investigation, this article has been retracted by the Editorial Office of Chinese Physics B.


Finger interruptions are common problems in screen printed solar cells, resulting in poor performance in efficiency because of high effective series resistance. Electroluminescence (EL) imaging is typically used to identify interrupted fingers. In this paper, we demonstrate an alternative method based on photoluminescence (PL) imaging to identify local series resistance defects, with a particular focus on finger interruptions. Ability to detect finger interruptions by using PL imaging under current extraction is analyzed and verified. The influences of external bias control and illumination intensity on PL images are then studied in detail. Finally, in comparison with EL imaging, the using of PL imaging to identify finger interruptions possesses the prominent advantages:in PL images, regions affected by interrupted fingers show higher luminescence intensity, while regions affected by recombination defects show lower luminescence intensity. This inverse signal contrast allows PL imaging to more accurately identify the defect types.

Keywords:  silicon solar cells      luminescence      defects      series resistance  
Received:  26 December 2017      Revised:  09 April 2018      Accepted manuscript online: 
PACS:  88.40.jj (Silicon solar cells)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.61504139 and 61275040) and the Fund from the Chinese Academy of Sciences (Grant No.Y072051002).

Corresponding Authors:  Lei Zhang, Pei-De Han     E-mail:  zhanglei615@semi.ac.cn;pdhan@red.semi.ac.cn

Cite this article: 

Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德) Detection of finger interruptions in silicon solar cells using photoluminescence imaging 2018 Chin. Phys. B 27 068801

[1] Trupke T, Pink E, Bardos R A and Abbott M D 2007 Appl. Phys. Lett. 90 093506
[2] Xiao Y P, Gao C, Wang T and Zhou L 2017 Acta Phys. Sin. 66 158801 (in Chinese)
[3] R De Rose, Malomo A, Magnone P, Crupi F, Cellere G, Martire M, Tonini D and Sangiorgi E 2012 Microelectronics Reliability 52 2500
[4] Hadi B, Mohammad A K and and Shahramm M 2017 Chin. Phys. B 26 108801
[5] Chaturvedi P, Hoex B and Walsh T M 2013 Sol. Energy Mater. Sol. Cells 108 78
[6] Fuyuki T, Kondo H, Yamazaki T, Takahashi Y and Uraoka Y 2005 Appl. Phys. Lett. 86 262108
[7] Höffler H, Haunschild J and Rein S 2016 Sol. Energy Mater. Sol. Cells 152 180
[8] Wuürfel P, Trupke T, Puzzer T, Schaäffer E, Warta W and Glunz S W 2007 J. Appl. Phys. 101 123110
[9] Giesecke J A, Kasemann M and Warta W 2009 J. Appl. Phys. 106 014907
[10] Glatthaar M, Haunschild J, Kasemann M, Giesecke J, Warta W and Rein S 2010 Phys. Status Solidi-R 4 13
[11] Hinken D, Ramspeck K, Bothe K, Fischer B and Brendel R 2007 Appl. Phys. Lett. 91 182104
[12] Höffler H, Al-Mohtaseb H, Haunschild J, Michl B and Kasemann M 2014 J. Appl. Phys. 115 034508
[13] Kampwerth H, Trupke T, Weber J W and Augarten Y 2008 Appl. Phys. Lett. 93 202102
[14] Padilla M, Reichel C, Hagedorn N, Fell A, Keding R, Michl B, Kasemann M, Warta W and Schubert M C 2016 Prog. Photovolt. Res. Appl. 24 326
[15] Shen C, Kampwerth H and Green M A 2014 Sol. Energy Mater. Sol. Cells 130 393
[16] Shen C, Wang K and Green M A 2014 Sol. Energy Mater. Sol. Cells 128 260
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[9] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
No Suggested Reading articles found!