|
|
Ground-state information geometry and quantum criticality in an inhomogeneous spin model |
Ma Yu-Quan (马余全) |
School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China |
|
|
Abstract We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja=Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase.
|
Received: 24 March 2015
Revised: 27 May 2015
Accepted manuscript online:
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
75.10.Pq
|
(Spin chain models)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
05.70.Jk
|
(Critical point phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131). |
Corresponding Authors:
Ma Yu-Quan
E-mail: yqma@bistu.edu.cn
|
Cite this article:
Ma Yu-Quan (马余全) Ground-state information geometry and quantum criticality in an inhomogeneous spin model 2015 Chin. Phys. B 24 090301
|
[1] |
Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
|
[2] |
Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
|
[3] |
Vojta M 2003 Rep. Prog. Phys. 66 2069
|
[4] |
Bengtsson I and Zyczkowski K 2008 Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge: Cambridge University Press)
|
[5] |
Ortiz G 2010 Understanding in Quantum Phase Transitions (Carr L ed.) (Boca Raton: Taylor & Francis)
|
[6] |
Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
|
[7] |
Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
|
[8] |
Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
|
[9] |
Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
|
[10] |
Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
|
[11] |
Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405
|
[12] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[13] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[14] |
Campbell S, Mazzola L, de Chiara G, Apollaro T J G, Plastina F, Busch T and Paternostro M 2013 New J. Phys. 15 043033
|
[15] |
Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603
|
[16] |
Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701
|
[17] |
You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
|
[18] |
Gu S J 2010 Int. J. Mod. Phys. B 24 4371
|
[19] |
Chen S, Wang L, Gu S J and Wang Y 2007 Phys. Rev. E 76 061108
|
[20] |
Yang S, Gu S J, Sun C P and Lin H Q 2008 Phys. Rev. A 78 012304
|
[21] |
Zhao J H and Zhou H Q 2009 Phys. Rev. B 80 014403
|
[22] |
Berry M V 1984 Proc. R. Soc. London A 392 45
|
[23] |
Simon B 1983 Phys. Rev. Lett. 51 2167
|
[24] |
Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
|
[25] |
Hamma A 2006 arXiv: quant-ph/0602091
|
[26] |
Zhu S L 2006 Phys. Rev. Lett. 96 077206
|
[27] |
Ma Y Q and Chen S 2009 Phys. Rev. A 79 022116
|
[28] |
Hirano T, Katsura H and Hatsugai Y 2008 Phys. Rev. B 77 094431
|
[29] |
Hatsugai Y 2010 New J. Phys. 12 065004
|
[30] |
Fukui T and Fujiwara T 2009 J. Phys. Soc. Jpn. 78 093001
|
[31] |
Ma Y Q, Yu Z X, Wang D S, Xie B H and Li X G 2012 EPL 100 60001
|
[32] |
Ma Y Q, Yu Z X, Wang D S and Li X G 2013 Phys. Lett. A 377 1250
|
[33] |
Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289
|
[34] |
Berry M V 1989 Geometric Phases in Physics (Shapere A and Wilczek F eds.) (Singapore: World Scientific)
|
[35] |
Resta R 2005 Phys. Rev. Lett. 95 196805
|
[36] |
Haldane F D M 2011 Phys. Rev. Lett. 107 116801
|
[37] |
Ma Y Q, Chen S, Fan H and Liu W M 2010 Phys. Rev. B 81 245129
|
[38] |
Rezakhani A T, Abasto D F, Lidar D A and Zanardi P 2010 Phys. Rev. A 82 012321
|
[39] |
Matsuura S and Ryu S 2010 Phys. Rev. B 82 245113
|
[40] |
Neupert T, Chamon C and Mudry C 2013 Phys. Rev. B 87 245103
|
[41] |
Legner M and Neupert T 2013 Phys. Rev. B 88 115114
|
[42] |
Thouless D J, Kohmoto M, Nightingale M P and Nijs M 1982 Phys. Rev. Lett. 49 405
|
[43] |
Niu Q and Thouless D J 1984 J. Phys. A 17 2453
|
[44] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[45] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[46] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[47] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[48] |
Ma Y Q, Gu S J, Chen S, Fan H and Liu W M 2012 EPL 103 10008
|
[49] |
Kolodrubetz M, Gritsev V and Polkovnikov A 2013 Phys. Rev. B 88 064304
|
[50] |
Ma Y Q 2014 Phys. Rev. E 90 042133
|
[51] |
Yang L, Ma Y Q and Li X G 2015 Physica B 456 359
|
[52] |
Wootters W K 1981 Phys. Rev. D 23 357
|
[53] |
Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
|
[54] |
de Lima J P, Goncalves L L and Alves T F A 2007 Phys. Rev. B 75 214406
|
[55] |
Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
|
[56] |
Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|