Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090301    DOI: 10.1088/1674-1056/24/9/090301
GENERAL Prev   Next  

Ground-state information geometry and quantum criticality in an inhomogeneous spin model

Ma Yu-Quan (马余全)
School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
Abstract  We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja=Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase.
Keywords:  quantum geometry tensor      topological order      quantum phase transition  
Received:  24 March 2015      Revised:  27 May 2015      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  75.10.Pq (Spin chain models)  
  73.43.Nq (Quantum phase transitions)  
  05.70.Jk (Critical point phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).
Corresponding Authors:  Ma Yu-Quan     E-mail:  yqma@bistu.edu.cn

Cite this article: 

Ma Yu-Quan (马余全) Ground-state information geometry and quantum criticality in an inhomogeneous spin model 2015 Chin. Phys. B 24 090301

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
[3] Vojta M 2003 Rep. Prog. Phys. 66 2069
[4] Bengtsson I and Zyczkowski K 2008 Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge: Cambridge University Press)
[5] Ortiz G 2010 Understanding in Quantum Phase Transitions (Carr L ed.) (Boca Raton: Taylor & Francis)
[6] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[7] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[8] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[9] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[10] Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[11] Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405
[12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[13] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[14] Campbell S, Mazzola L, de Chiara G, Apollaro T J G, Plastina F, Busch T and Paternostro M 2013 New J. Phys. 15 043033
[15] Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603
[16] Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[17] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
[18] Gu S J 2010 Int. J. Mod. Phys. B 24 4371
[19] Chen S, Wang L, Gu S J and Wang Y 2007 Phys. Rev. E 76 061108
[20] Yang S, Gu S J, Sun C P and Lin H Q 2008 Phys. Rev. A 78 012304
[21] Zhao J H and Zhou H Q 2009 Phys. Rev. B 80 014403
[22] Berry M V 1984 Proc. R. Soc. London A 392 45
[23] Simon B 1983 Phys. Rev. Lett. 51 2167
[24] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
[25] Hamma A 2006 arXiv: quant-ph/0602091
[26] Zhu S L 2006 Phys. Rev. Lett. 96 077206
[27] Ma Y Q and Chen S 2009 Phys. Rev. A 79 022116
[28] Hirano T, Katsura H and Hatsugai Y 2008 Phys. Rev. B 77 094431
[29] Hatsugai Y 2010 New J. Phys. 12 065004
[30] Fukui T and Fujiwara T 2009 J. Phys. Soc. Jpn. 78 093001
[31] Ma Y Q, Yu Z X, Wang D S, Xie B H and Li X G 2012 EPL 100 60001
[32] Ma Y Q, Yu Z X, Wang D S and Li X G 2013 Phys. Lett. A 377 1250
[33] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289
[34] Berry M V 1989 Geometric Phases in Physics (Shapere A and Wilczek F eds.) (Singapore: World Scientific)
[35] Resta R 2005 Phys. Rev. Lett. 95 196805
[36] Haldane F D M 2011 Phys. Rev. Lett. 107 116801
[37] Ma Y Q, Chen S, Fan H and Liu W M 2010 Phys. Rev. B 81 245129
[38] Rezakhani A T, Abasto D F, Lidar D A and Zanardi P 2010 Phys. Rev. A 82 012321
[39] Matsuura S and Ryu S 2010 Phys. Rev. B 82 245113
[40] Neupert T, Chamon C and Mudry C 2013 Phys. Rev. B 87 245103
[41] Legner M and Neupert T 2013 Phys. Rev. B 88 115114
[42] Thouless D J, Kohmoto M, Nightingale M P and Nijs M 1982 Phys. Rev. Lett. 49 405
[43] Niu Q and Thouless D J 1984 J. Phys. A 17 2453
[44] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[45] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[46] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[47] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[48] Ma Y Q, Gu S J, Chen S, Fan H and Liu W M 2012 EPL 103 10008
[49] Kolodrubetz M, Gritsev V and Polkovnikov A 2013 Phys. Rev. B 88 064304
[50] Ma Y Q 2014 Phys. Rev. E 90 042133
[51] Yang L, Ma Y Q and Li X G 2015 Physica B 456 359
[52] Wootters W K 1981 Phys. Rev. D 23 357
[53] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[54] de Lima J P, Goncalves L L and Alves T F A 2007 Phys. Rev. B 75 214406
[55] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[56] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[7] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[12] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[13] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[14] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[15] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
No Suggested Reading articles found!