Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017106    DOI: 10.1088/1674-1056/28/1/017106
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

Heavy fermions in high magnetic fields

M Smidman1, B Shen(沈斌)1, C Y Guo(郭春煜)1, L Jiao(焦琳)1, X Lu(路欣)1,2, H Q Yuan(袁辉球)1,2
1 Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Heavy fermion materials are prototypical strongly correlated electron systems, where the strong electron–electron interactions lead to a wide range of novel phenomena and emergent phases of matter. Due to the low energy scales, the relative strengths of the Ruderman–Kittel–Kasuya–Yosida (RKKY) and Kondo interactions can often be readily tuned by non-thermal control parameters such as pressure, doping, or applied magnetic fields, which can give rise to quantum criticality and unconventional superconductivity. Here we provide a brief overview of research into heavy fermion materials in high magnetic fields, focussing on three main areas. Firstly we review the use of magnetic fields as a tuning parameter, and in particular the ability to realize different varieties of quantum critical behaviors. We then discuss the properties of heavy fermion superconductors in magnetic fields, where experiments in applied fields can reveal the nature of the order parameter, and induce new novel phenomena. Finally we report recent studies of topological Kondo systems, including topological Kondo insulators and Kondo–Weyl semimetals. Here experiments in magnetic fields can be used to probe the topologically non-trivial Fermi surface, as well as related field-induced phenomena such as the chiral anomaly and topological Hall effect.
Keywords:  heavy fermions      high magnetic fields      quantum phase transitions      heavy fermion superconductivity      topological Kondo systems  
Received:  06 November 2018      Revised:  27 December 2018      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.70.Tx (Heavy-fermion superconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1632275), the National Key R&D Program of China (Grant Nos. 2017YFA0303100 and 2016YFA0300202), and the Science Challenge Project of China (Grant No. TZ2016004).
Corresponding Authors:  H Q Yuan     E-mail:  hqyuan@zju.edu.cn

Cite this article: 

M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球) Heavy fermions in high magnetic fields 2019 Chin. Phys. B 28 017106

[1] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[2] Coleman P 2007 Handbook of Magnetism and Advanced Magnetic Materials Vol. 1 (New York: Wiley)
[3] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[4] Kasuya T 1956 Prog. Theor. Phys. 16 45
[5] Yosida K 1957 Phys. Rev. 106 893
[6] Doniach S 1977 Phys. B+ C 91 231
[7] Chen Y, Weng Z, Smidman M, Lu X and Yuan H Q 2016 Chin. Phys. B 25 077401
[8] Weng Z F, Smidman M, Jiao L, Lu Xin and Yuan H Q 2016 Rep. Prog. Phys. 79 094503
[9] Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O and Steglich F 2002 Phys. Rev. Lett. 89 056402
[10] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524
[11] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[12] Coleman P, Pepin C, Si Q and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723
[13] Si Q and Steglich F 2010 Science 329 1161
[14] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[15] Li G, Xiang Z, Yu F, Asaba, T, Lawson B, Cai P, Tinsman C, Berkly A, Wolgast S, Eo Y S, Kim Dae-Jeong, Kurdak C, Allen J W, Sun X, Chen X H, Wang Y Y, Fisk Z and Li L 2014 Science 346 1208
[16] Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G and Sebastian S E 2015 Science 349 287
[17] Hartstein M, Toews W H, Hsu Y T, Zeng B, Chen X, Hatnean M C, Zhang Q R, Nakamura S, Padgett A S, Rodway-Gant G, Berk J, Kingston M K, Zhang G H, Chan M K, Yamashita S, Sakakibara T, Takano Y, Park J H, Balicas L, Harrison N, Shitsevalova N, Balakrishnan G, Lonzarich G, Hill R W, Sutherland M and Sebastian S E 2017 Nat. Phys. 14 166
[18] Luo Y, Chen H, Dai J, Xu Z A and Thompson J D 2015 Phys. Rev. B 91 075130
[19] Chen F, Shang C, Jin Z, Zhao D, Wu Y P, Xiang Z J, Xia Z C, Wang A F, Luo X G, Wu T and Chen X H 2015 Phys. Rev. B 91 205133
[20] Nakajima Y, Syers P, Wang X, Wang R and Paglione J 2016 Nat. Phys. 12 213
[21] Xu Y, Cui S, Dong J K, Zhao D, Wu T, Chen X H, Sun K, Yao H and Li S Y 2016 Phys. Rev. Lett. 116 246403
[22] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[23] Hasan M Z, Xu S Y, Belopolski I and Huang S M 2017 Ann. Rev. Cond. Mat. Phys. 8 289
[24] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[25] Luk’yanchuk I A and Kopelevich Y 2004 Phys. Rev. Lett. 93 166402
[26] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[27] Wu F, Guo C Y, Smidman M, Zhang J L, Chen Y, Singleton J and Yuan H Q 2018 arXiv: 1807.03070
[28] Nielsen H and Ninomiya M 1983 Phys. Lett. B 130 389
[29] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[30] Huang X, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[31] Guo C Y, Cao C, Smidman M, Wu F, Zhang Y J, Steglich F, Zhang F C and Yuan H Q 2017 Npj Quantum Mater. 2 39
[32] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F and Yuan H Q 2018 Nat. Commun. 9 4622
[33] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G and Steglich F 2003 Science 302 2104
[34] Yuan H Q, Grosche F M, Deppe M, Sparn G, Geibel C and Steglich F 2006 Phys. Rev. Lett. 96 047008
[35] Holmes A T, Jaccard D and Miyake K 2004 Phys. Rev. B 69 024508
[36] Lawrence J M and Shapiro S M 1980 Phys. Rev. B 22 4379
[37] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
[38] Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Phys. Rev. Lett. 84 4986
[39] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z and Monthoux P 2001 J. Phys.: Condens. Matter 13 L337
[40] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2001 Europhys. Lett. 53 354
[41] Knebel G, Aoki D, Braithwaite D, Salce B and Flouquet J 2006 Phys. Rev. B 74 020501
[42] Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65
[43] Chen G, Ohara S, Hedo M, Uwatoko Y, Saito K, Sorai M and Sakamoto I 2002 J. Phys. Soc. Jpn. 71 2836
[44] Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L and Thompson J D 2003 Phys. Rev. B 67 020506
[45] Kaczorowski D, Pikul A P, Gnida D and Tran V H 2009 Phys. Rev. Lett. 103 027003
[46] Shishido H, Settai R, Aoki D, Ikeda S, Nakawaki H, Nakamura N, Iizuka T, Inada Y, Sugiyama K, Takeuchi T, Kindo K, Kobayashi T C, Haga Y, Harima H, Aoki Y, Namiki T, Sato H and Yoshichika O 2002 J. Phys. Soc. Jpn. 71 162
[47] Harrison N, Alver U, Goodrich R G, Vekhter I, Sarrao J L, Pagliuso P G, Moreno N O, Balicas L, Fisk Z, Hall D, Macaluso Robin T and Chan J Y 2004 Phys. Rev. Lett. 93 186405
[48] Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z F, Pang G M, Shang T, Zhang J L, Lee H O, Park T, Jaime M, Thompson J D, Steglich F, Si Q M and Yuan H Q 2015 Proc. Natl Acad. Sci. USA 112 673
[49] Shishido H, Settai R, Harima H and Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103
[50] Hall D, Palm E C, Murphy T P, Tozer S W, Fisk Z, Alver U, Goodrich R G, Sarrao J L, Pagliuso P G and Ebihara T 2001 Phys. Rev. B 64 212508
[51] Jiao L, Weng Z F, Smidman M, Graf D, Singleton J, Bauer E D, Thompson J D and Yuan H Q 2017 Philos. Mag. 97 3446
[52] Ronning F, Helm T, Shirer K R, Bachmann M D, Balicas L, Chan M K, Ramshaw B J, McDonald R D, Balakirev F F, Jaime M, Bauer E D and Moll P J W 2017 Nature 548 313
[53] Dong J K, Zhang H, Qiu X, Pan B Y, Dai Y F, Guan T Y, Zhou S Y, Gnida D, Kaczorowski D and Li S Y 2011 Phys. Rev. X 1 011010
[54] Paglione J, Tanatar M A, Hawthorn D G, Boaknin E, Hill R W, Ronning F, Sutherl M, Taillefer L, Petrovic C and Canfield P C 2003 Phys. Rev. Lett. 91 246405
[55] Bianchi A, Movshovich R, Vekhter I, Pagliuso P G and Sarrao J L 2003 Phys. Rev. Lett. 91 257001
[56] Bramwell S T and Gingras M J P 2001 Science 294 1495
[57] Kim M S and Aronson M C 2013 Phys. Rev. Lett. 110 017201
[58] Coleman P and Nevidomskyy A H 2010 J. Low Temp. Phys. 161 182
[59] Si Q 2006 Physica B 378–380 23
[60] Custers J, Gegenwart P, Geibel C, Steglich F, Coleman P and Paschen S 2010 Phys. Rev. Lett. 104 186402
[61] Hulliger F 1993 J. Alloys Compd. 196 225
[62] Dönni A, Ehlers G, Maletta H, Dönni, A, Ehlers G, Maletta H, Fischer P, Kitazawa H and Zolliker M 1996 J. Phys. Condens. Matter 8 11213
[63] Oyamada A, Maegawa S, Nishiyama M, Oyamada A, Maegawa S, Nishiyama M, Kitazawa H and Isikawa Y 2008 Phys. Rev. B 77 064432
[64] Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O and Löhneysen H V 2017 Phys. Rev. Lett. 118 107204
[65] Zhao H C, Zhang J H, Hu S L, Zhao H, Zhang J, Hu S, Isikawa Y, Luo J, Steglich F and Sun P 2016 Phys. Rev. B 94 235131
[66] Movshovich R, Jaime M, Thompson J D, Petrovic C, Fisk Z, Pagliuso P G and Sarrao J L 2001 Phys. Rev. Lett. 86 5152
[67] Chia E E M, Van Harlingen D J, Salamon M B, Yanoff B D, Bonalde I and Sarrao J L 2003 Phys. Rev. B 67 014527
[68] Vandervelde, D, Yuan H Q, Ōnuki Y and Salamon M B 2009 Phys. Rev. B 79 212505
[69] Lu X, Lee H, Park T, Ronning F, Bauer E D and Thompson J D 2012 Phys. Rev. Lett. 108 027001
[70] Vorontsov A B and Vekhter I 2007 Phys. Rev. B 75 224501
[71] An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M and Machida K 2010 Phys. Rev. Lett. 104 037002
[72] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R and Onuki Y 2001 Phys. Rev. Lett. 87 057002
[73] Kasahara Y, Iwasawa T, Shimizu Y, Shishido H, Shibauchi T, Vekhter I and Matsuda Y 2008 Phys. Rev. Lett. 100 207003
[74] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[75] Larkin A I and Sov Y N 1965 Phys. JETP 20 762
[76] Bianchi A, Movshovich R, Oeschler N, Gegenwart P, Steglich F, Thompson J D, Pagliuso P G and Sarrao J L 2002 Phys. Rev. Lett. 89 137002
[77] Bianchi A, Movshovich R, Capan C, Pagliuso P G and Sarrao J L 2003 Phys. Rev. Lett. 91 187004
[78] Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W and Hall D 2003 Nature 425 51
[79] Kakuyanagi K, Saitoh M, Kumagai K, Takashima S, Nohara M, Takagi H and Matsuda Y 2005 Phys. Rev. Lett. 94 047602
[80] Mitrović V F, Horvatić M, Berthier C, Knebel G, Lapertot G and Flouquet J 2006 Phys. Rev. Lett. 97 117002
[81] Young B L, Urbano R R, Curro N J, Thompson J D, Sarrao J L, Vorontsov A B and Graf M J 2007 Phys. Rev. Lett. 98 036402
[82] Kenzelmann M, Strässle T, Niedermayer C, Sigrist M, Padmanabhan B, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L and Thompson J D 2008 Science 321 1652
[83] Kenzelmann M, Gerber S, Egetenmeyer N, Gavilano J L, Strässle T, Bianchi A D, Ressouche E, Movshovich R, Bauer E D, Sarrao J L and Thompson J D 2010 Phys. Rev. Lett. 104 127001
[84] Gerber S, Bartkowiak M, Gavilano J L, Ressouche E, Egetenmeyer N, Niedermayer C, Bianchi A D, Movshovich R, Bauer E D, Thompson J D and Kenzelmann M 2014 Nat. Phys. 10 126
[85] Agterberg D F, Sigrist M and Tsunetsugu H 2009 Phys. Rev. Lett. 102 207004
[86] Aperis A, Varelogiannis G and Littlewood P B 2010 Phys. Rev. Lett. 104 216403
[87] Kim D Y, Lin S Z, Weickert F, Kenzelmann M, Bauer E D, Ronning F, Thompson J D and Movshovich R 2016 Phys. Rev. X 6 041059
[88] Riseborough P S 2000 Adv. Phys. 49 257
[89] Menth A, Buehler E and Geballe T H 1969 Phys. Rev. Lett. 22 295
[90] Allen J W, Batlogg B and Wachter P 1979 Phys. Rev. B 20 4807
[91] Wolgast S, Kurdak Ç, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405
[92] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z and Xia J 2013 Sci. Rep. 3 3150
[93] Kim D J, Xia J and Fisk Z 2014 Nat. Mater. 13 466
[94] Erten O, Ghaemi P and Coleman P 2016 Phys. Rev. Lett. 116 046403
[95] Knolle J and Cooper N R 2017 Phys. Rev. Lett. 118 096604
[96] Erten O, Chang P Y, Coleman P and Tsvelik A M 2017 Phys. Rev. Lett. 119 057603
[97] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin Hsin, Jia S and Hasan M Z 2015 Science 349 613
[98] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Shi M and Ding H 2015 Nat. Phys. 11 724
[99] Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Prabhakaran Rahn M, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728
[100] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[101] Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Nat. Phys. 12 272
[102] Niu X H, Xu D F, Bai Y H, Song Q, Shen X P, Xie B P, Sun Z, Huang Y B, Peets D C and Feng D L 2016 Phys. Rev. B 94 165163
[103] Zeng L K, Lou R, Wu D S, Xu Q N, Guo P J, Kong L Y, Liu T, Lu L, Huang Y B, Fang C, Sun S S, Wang Q, Wang L, Shi Y G, Weng H M, Lei H C, Liu K, Wang S C, Qian T, Luo J L and Ding H 2016 Phys. Rev. Lett. 117 127204
[104] Wu F, Guo C Y, Smidman M, Zhang J L and Yuan H Q 2017 Phys. Rev. B 96 125122
[105] Li P, Wu Z, Wu F, Cao C, Guo C, Wu Y, Liu Y, Sun Z, Cheng C M, Lin D S, Steglich F, Yuan H Q, Chiang T C and Yang L 2018 Phys. Rev. B 98 085103
[106] Duan X, Wu F, Chen J, Zhang P, Liu Y and Yuan H C 2018 arXiv: 1802.04554
[107] Fisk, Z, Canfield P C, Beyermann W P, Thompson J D, Hundley M F, Ott H R, Felder E, Maple M B, Lopez M A, de la Torre, Visani P and Seaman C L 1991 Phys. Rev. Lett. 67 3310
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[4] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[5] Optical study on intermediate-valence compounds Yb1-xLuxAl3
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林). Chin. Phys. B, 2018, 27(1): 017803.
[6] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
No Suggested Reading articles found!