Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086401    DOI: 10.1088/1674-1056/24/8/086401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bending-induced phase transition in monolayer black phosphorus

Pan Dou-Xing (潘斗兴)a c, Wang Tzu-Chiang (王自强)a, Guo Wan-Lin (郭万林)b
a State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
b State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Bending-induced phase transition in monolayer black phosphorus is investigated through first principles calculations. By wrapping the layer into nanotubes along armchair and zigzag directions with different curvatures, it is found that phase transitions of the tubes occur when radius of curvature is smaller than 5 Å in bending along the zigzag direction, while the tubes remain stable along the armchair direction. Small zigzag tubes with odd numbered monolayer unit cells tend to transfer toward armchair-like phases, but the tubes with even numbered monolayer unit cells transfer into new complex bonding structures. The mechanism for the bending-induced phase transition is revealed by the comprehensive analyses of the bending strain energies, electron density distributions, and band structures. The results show significant anisotropic bending stability of black phosphorus and should be helpful for its mechanical cleavage fabrication in large size.

Keywords:  bending      monolayer black phosphorus      phase transition  
Received:  23 January 2015      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.63.Fg (Nanotubes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, and 11132011) and the National Basic Research Program of China (Grant No.2012CB937500).

Corresponding Authors:  Pan Dou-Xing     E-mail:  pandx@lnm.imech.ac.cn

Cite this article: 

Pan Dou-Xing (潘斗兴), Wang Tzu-Chiang (王自强), Guo Wan-Lin (郭万林) Bending-induced phase transition in monolayer black phosphorus 2015 Chin. Phys. B 24 086401

[1] Koenig S, Doganov R, Schmidt H, Castro Neto A and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[2] Xia F N, Wang H and Jia Y C 2014 Nat. Commun. 5 4458
[3] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372.
[4] Lu W L, Nan H Y, Hong J H, Chen Y M, Zhu C, Liang Z, Ma X Y, Ni Z H, Jin C H and Zhang Z 2014 Nano Res. 7 853
[5] Burdett J K and MacLarnan T J 1981 J. Chem. Phys. 75 5764
[6] Hoffmann R 1988 Solids and Surfaces (New York: Wiley-VCH)
[7] Seo D K and Hoffmann R 1999 J. Solid State Chem. 147 26
[8] Katzke H and Tolèdano P 2008 Phys. Rev. B 77 024109
[9] Boulfelfel S E, Seifert G, Grin Y and Leoni S 2012 Phys. Rev. B 85 014110
[10] Wu J Y, Nagao S, He J Y and Zang Z L 2011 Nano Lett. 11 5264
[11] Stepkova V, Matron P and Hlinka J 2012 J. Phys.: Condens. Matter 24 212201
[12] Milchev A and Binder K 2013 Europhys. Lett. 102 58003
[13] Zhao J H, Kou L Z, Jiang J W and Rabczuk T 2014 Nanotechnol. 25 295701
[14] Guo H Y, Lu N, Dai J, Wu X J and Zeng X C 2014 J. Phys. Chem. C 118 14051
[15] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Blochl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Brown A and Rundqvist S 1965 Acta Cryst. 19 684
[23] Lange S, Schmidt P and Nilges T 2007 Inorg. Chem. 46 4028
[24] Barnett R N and Landman U 1993 Phys. Rev. B 48 2081
[25] Kühne T D, Krack M, Mohamed F R and Parrinello M 2007 Phys. Rev. Lett. 98 066401
[26] Pan D X 2015 Chin. Sci. Bull. 60 746 (in Chinese)
[27] Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 226801
[28] Frenking G and Shaik S 2014 The Chemical Bond (New York: Wiley-VCH)
[29] Albright T A, Burdett J K and Whangbo M H 1985 Orbital Interactions in Chemistry (New York: Wiley-VCH)
[30] Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J and van der Zant H S J 2014 2D Mater. 1 025001
[31] Peierls E 1955 Quantum Theory of Solids (Oxford: Clarendon Press)
[32] Mintmire J W, Dunlap B I and White C T 1992 Phys. Rev. Lett. 68 631
[33] Saito R, Fujita M, Dresselhaus G and Dresselhaus M S 1992 Phys. Rev. B 46 1804
[34] Harigaya K and Fujita M 1993 Phys. Rev. B 47 16563
[35] Okahara K, Tanaka K, Aoki H, Sato T and Yamabe T 1994 Chem. Phys. Lett. 219 462
[36] Seifert G and Hernández E 2000 Chem. Phys. Lett. 318 355
[37] Viet N A, Ajiki H and Ando T 1994 J. Phys. Soc. Jpn. 63 3036
[38] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[39] Togo A and Tanaka I 2013 Phys. Rev. B 87 184104
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!