Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074702    DOI: 10.1088/1674-1056/24/7/074702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nano watermill driven by revolving charge

Zhou Xiao-Yan (周晓艳)a b, Kou Jian-Long (寇建龙)b, Nie Xue-Chuan (聂雪川)c, Wu Feng-Min (吴锋民)a b, Liu Yang (刘扬)d, Lu Hang-Jun (陆杭军)b
a Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
c Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
d Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract  

A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube (SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters.

Keywords:  water pumping      molecular dynamics simulations      carbon nanotube      revolving charge  
Received:  19 November 2014      Revised:  13 February 2015      Accepted manuscript online: 
PACS:  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
  47.11.Mn (Molecular dynamics methods)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11005093 and 61274099), the Research Fund of Education Department of Zhejiang Province, China (Grant No. Y201223336), the Zhejiang Provincial Science and Technology Key Innovation Team, China (Grant No. 2011R50012), the Key Laboratory of Zhejiang Province, China (Grant No. 2013E10022), and the Hong Kong Polytechnic University, China (Grant No. G-YL41).

Corresponding Authors:  Wu Feng-Min, Liu Yang, Lu Hang-Jun     E-mail:  wfm@zjnu.cn;yang.liu@polyu.edu.hk;zjlhjun@zjnu.cn

Cite this article: 

Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军) Nano watermill driven by revolving charge 2015 Chin. Phys. B 24 074702

[1] Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S and Sun L 2008 Adv. Mater. 20 1772
[2] Darhuber A A and Troian S M 2005 Annu. Rev. Fluid Mech. 37 425
[3] Insepov Z, Wolf D and Hassanein A 2006 Nano Lett. 6 1893
[4] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[5] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2008 Nature 452 301
[6] Yuan Q and Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[7] Tyree M T 2003 Nature 423 923
[8] Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R and Kjellbom P 2006 Nature 439 688
[9] Tajkhorshid E, Nollert P, Jensen M O, Miercke L J W, O'Connell J, Stroud R M and Schulten K 2002 Science 296 525
[10] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
[11] Su J and Guo H 2012 J. Phys. Chem. B 116 5925
[12] Ku D N 1997 Annu. Rev. Fluid. Mech. 29 399
[13] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y and Chen Y Y 2012 Chin. Phys. B 21 054703
[14] Zhou X Y and Lu H J 2007 Chin. Phys. 16 335
[15] Wang X Y, Cheng C, Wang S L and Liu S R 2009 Microfluid. Nanofluid. 6 145
[16] Liu Z, Zhao Y C and Sun L F 2010 Physics 4 251 (in Chinese)
[17] Fang H P and Tu Y S 2010 Physics 2 002 (in Chinese)
[18] Joseph S and Aluru N R 2008 Phys. Rev. Lett. 101 064502
[19] Rinne K F, Gekle S, Bonthuis D J and Netz R R 2012 Nano Lett. 12 1780
[20] Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
[21] Qiu H, Shen R and Guo W 2011 Nano Res. 4 284
[22] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J and Fang H P 2007 Nat. Nanotechol. 2 709
[23] Duan W H and Wang Q 2010 ACS Nano 4 2338
[24] Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N and Ling Z Y 2014 J. Appl. Phys. 116 074307
[25] Feng J W, Ding H M, Ren C L and Ma Y Q 2014 Nanoscale 6 13606
[26] De Luca S, Todd B D, Hansen J S and Daivis P J 2014 Langmuir 30 3095
[27] Zhou X, Wu F, Kou J, Nie X, Liu Y and Lu H 2013 J. Phys. Chem. B 117 11681
[28] Li X P, Kong G P, Zhang X and He G W 2013 Appl. Phys. Lett. 103 143117
[29] De Luca S, Todd B, Hansen J and Daivis P J 2013 J. Chem. Phys. 138 154712
[30] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[31] Joseph S and Aluru N R 2008 Nano Lett. 8 452
[32] Noy A, Park H G, Fornasiero F, Holt J K, Grigoropoulos C P and Bakajin O 2007 Nano Today 2 22
[33] Kràl P and Tomànek D 1999 Phys. Rev. Lett. 82 5373
[34] Svensson K, Olin H and Olsson E 2004 Phys. Rev. Lett. 93 145901
[35] Wang B and Kràl P 2007 Phys. Rev. Lett. 98 266102
[36] Lohrasebi A and Feshanjerdi M 2012 J. Mol. Model. 18 4191
[37] Chang T 2008 Phys. Rev. Lett. 101 175501
[38] Longhurst M and Quirke N 2007 Nano Lett. 7 3324
[39] Kou J, Zhou X, Lu H, Xu Y, Wu F and Fan J 2012 Soft Matter 8 12111
[40] Kou J, Mei M, Lu H, Wu F and Fan J 2012 Phys. Rev. E 85 056301
[41] Vaitheeswaran S, Rasaiah J C and Hummer G 2004 J. Chem. Phys. 121 7955
[42] Dzubiella J and Hansen J P 2005 J. Chem. Phys. 122 234706
[43] Su J and Guo H 2011 ACS Nano 5 351
[44] Kràl P and Shapiro M 2001 Phys. Rev. Lett. 86 131
[45] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[46] Lu H, Nie X, Wu F, Zhou X and Kou J 2012 J. Chem. Phys. 136 174511
[47] Seldenthuis J S, Prins F, Thijssen J M and van der Zant H S J 2010 ACS Nano 4 6681
[48] Tierney H L, Murphy C J, Jewell A D, Baber A E, Iski E V, Khodaverdian H Y, McGuire A F, Klebanov N and Sykes E C H 2011 Nat Nano 6 625
[49] Gao L, Liu Q, Zhang Y, Jiang N, Zhang H, Cheng Z, Qiu W, Du S, Liu Y and Hofer W 2008 Phys. Rev. Lett. 101 197209
[50] Maleki T, Mohammadi S and Ziaie B 2009 Nanotechnology 20 105302
[51] Park S, Vosguerichian M and Bao Z 2013 Nanoscale 5 1727
[52] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[53] Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Model. 7 306
[54] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[55] Zeidel M, Ambudkar S, Smith B and Agre P 1992 Biochemistry 31 7436
[56] Zhang Q L, Jiang W Z, Liu J, Miao R D and Sheng N 2013 Phys. Rev. Lett. 110 254501
[57] Lu H J, Gong X J, Wang C L, Fang H P and Wang R Z 2008 Chin. Phys. Lett. 25 1145
[58] Li X Z, Walker B and Michaelides A 2011 Proc. Natl. Acad. Sci. USA 108 6369
[59] Pagliai M, Cardini G, Righini R and Schettino V 2003 J. Chem. Phys. 119 6655
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[8] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[9] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[14] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[15] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
No Suggested Reading articles found!